Skip to main content Accessibility help
×
Home

Integrated circuits in silicon carbide for high-temperature applications

  • Carl-Mikael Zetterling (a1)

Abstract

High-temperature electronic applications are presently limited to a maximum operational temperature of 225°C for commercial integrated circuits (ICs) using silicon. One promise of silicon carbide (SiC) is high-temperature operation, although most commercial efforts have targeted high-voltage discrete devices. Depending on the technology choice, several processing challenges are involved in making ICs using SiC. Bipolar, metal oxide semiconductor field-effect transistors, and junction field-effect transistor technologies have been demonstrated in operating temperatures of up to 600°C. Current technology performance and processing challenges relating to making ICs in SiC are reviewed in this article.

Copyright

References

Hide All
1.Cressler, J.D., Mantooth, H.A., Eds., Extreme Environment Electronics (CRC Press, UK, 2013).
2.Zetterling, C.-M., Ed., Process Technology for Silicon Carbide Devices (IEE, London, 2002).
3.Kimoto, T., Cooper, J.A., Fundamentals of Silicon Carbide Technology (Wiley, New York, 2014).
4.Ryu, S.-H., Kornegay, K.T., Cooper, J.A. Jr., Melloch, M.R., IEEE Trans. Electron Devices 45, 45 (1998).
5.Young, R.A.R., Clark, D., Cormack, J.D., Murphy, A.E., Smith, D.A., Thompson, R.F., Ramsay, E.P., Finney, S., Mater. Sci. Forum 740742, 1065 (2013).
6.Xie, W., Cooper, J.A. Jr., Melloch, M.R., IEEE Electron Device Lett. 15, 455 (1994).
7.Ghandi, R., Chen, C.-P., Yin, L., Zhu, X., Yu, L., Arthur, S., Ahmad, F., Sandvik, P., IEEE Electron Device Lett. 35, 1206 (2014).
8.Lee, J.-Y., Singh, S., Cooper, J.A. Jr., IEEE Trans. Electron Devices 55, 1946 (2008).
9.Lanni, L., Malm, B.G., Östling, M., Zetterling, C.-M., IEEE Electron Device Lett. 34, 1091 (2013).
10.Hedayati, R., Lanni, L., Rodriguez, S., Malm, B.G., Rusu, A., Zetterling, C.-M., IEEE Electron Device Lett. 35, 693 (2014).
11.Neudeck, P.G., Garverick, S.L., Spry, D.J., Chen, L.-Y., Beheim, G.M., Krasowski, M.J., Mehregany, M., Phys. Status Solidi A 206, 2329 (2009).
12.Patil, A.C., Xiao-An, F., Mehregany, M., Garverick, S.L., Proc. IEEE Custom Integrated Circuits Conf. 73 (2009).
13.Chen, L.-Y., Spry, D., Neudeck, P.G., International Conference on High Temperature Electronics (2006).
14.Gaska, R., Gaevski, M., Deng, J., Jain, R., Simin, G., Shur, M., Proc. Eur. Solid State Device Res. Conf. 142 (2014).
15.Lanni, L., Malm, B.G., Östling, M., Zetterling, C.-M., IEEE Electron Device Lett. 35, 428 (2014).
16.Lanni, L., “Silicon Carbide Bipolar Technology for High Temperature Integrated Circuits,” PhD thesis, KTH Royal Institute of Technology, Sweden (2014), available athttp://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-145401.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed