Skip to main content
×
Home

Materials enabling nanofluidic flow enhancement

  • Alan J.H. McGaughey (a1) and Davide Mattia (a2)
Abstract
Abstract

This issue of MRS Bulletin focuses on materials that enable nanofluidic systems with unusually high mass fluxes, termed “enhancement factor” or “slip flow.” There is now ample evidence of such flow enhancement in nanochannels, with sizes ranging from subnanometer to a few nanometers. Most of the studies to date, both experimental and modeling, have focused on carbon nanotubes and, more recently, on graphene. Different fabrication methods result in different structures, surface chemistries, and defects, with a significant effect on flow enhancement. As new one-dimensional and two-dimensional nanomaterials are synthesized, a deeper understanding of the nanoscale transport physics is needed, particularly in the relationship between material properties and flow behavior. Herein, authors at the forefront of experimental, modeling, and theoretical developments in nanofluidic flow describe the state of the art in materials development and characterization.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Materials enabling nanofluidic flow enhancement
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Materials enabling nanofluidic flow enhancement
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Materials enabling nanofluidic flow enhancement
      Available formats
      ×
Copyright
References
Hide All
1. Hummer G., Rasaiah J.C., Noworyta J.P., Nature 414, 188 (2001).
2. Majumder M., Chopra N., Andrews R., Hinds B.J., Nature 438, 44 (2005).
3. Holt J.K., Park H.G., Wang Y., Stadermann M., Artyukhin A.B., Grigoropoulos C.P., Noy A., Bakajin O., Science 312, 1034 (2006).
4. Agrawal K.V., Drahushuk L.W., Strano M.S., Philos. Trans. R. Soc. Lond. A 374, 20150357 (2016).
5. Whitby M., Quirke N., Nat. Nanotechnol. 2, 87 (2007).
6. Mattia D., Gogotsi Y., Microfluid. Nanofluid. 5, 289 (2008).
7. Thomas J.A., McGaughey A.J.H., Phys. Rev. Lett. 102, 184502 (2009).
8. Joseph S., Aluru N.R., Nano Lett. 8, 452 (2008).
9. Sisan T., Lichter S., Microfluid. Nanofluid. 11, 787 (2011).
10. Walther J.H., Ritos K., Cruz-Chu E., Megaridis C.M., Koumoutsakos P., Nano Lett. 13, 1910 (2013).
11. Kannam S.K., Todd B.D., Hansen J.S., Daivis P.J., J. Chem. Phys. 138, 094701 (2013).
12. Nicholls W., Borg M., Lockerby D., Reese J., Microfluid. Nanofluid. 12, 257 (2012).
13. Mattia D., Calabrò F., Microfluid. Nanofluid. 13, 125 (2012).
14. Thomas J.A., McGaughey A.J.H., Nano Lett. 8, 2788 (2008).
15. Ho T.A., Papavassiliou D.V., Lee L.L., Striolo A., Proc. Natl. Acad. Sci. U.S.A. 108, 16170 (2011).
16. Lee K.P., Leese H., Mattia D., Nanoscale 4, 2621 (2012).
17. Khademi M., Sahimi M., J. Chem. Phys. 135, 204509 (2011).
18. Ritos K., Mattia D., Calabrò F., Reese J.M., J. Chem. Phys. 140, 014702 (2014).
19. Majumder M., Chopra N., Hinds B.J., J. Am. Chem. Soc. 127, 9062 (2005).
20. Nicholls W.D., Borg M.K., Lockerby D.A., Reese J.M., Mol. Simul. 38, 781 (2012).
21. Mattia D., Rossi M.P., Kim B.M., Korneva G., Bau H.H., Gogotsi Y., J. Phys. Chem. B 110, 9850 (2006).
22. Majumder M., Corry B., Chem. Commun. 47, 7683 (2011).
23. Corry B., Energy Environ. Sci. 4, 751 (2011).
24. Neto C., Evans D.R., Bonaccurso E., Butt H.-J., Craig V.S.J., Rep. Prog. Phys. 68, 2859 (2005).
25. Thomas J.A., McGaughey A.J.H., Kuter-Arnebeck O., Int. J. Therm. Sci. 49, 281 (2010).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 132
Total number of PDF views: 297 *
Loading metrics...

Abstract views

Total abstract views: 572 *
Loading metrics...

* Views captured on Cambridge Core between 12th April 2017 - 18th November 2017. This data will be updated every 24 hours.