Skip to main content
×
×
Home

Materials issues for quantum computation

  • James N. Eckstein (a1) and Jeremy Levy (a2)
Abstract

The new field of quantum computing uses qubits (quantum bits) in place of classical bits to carry out certain types of computation. Physical systems that act as qubits encompass a wide range of technologies, from ions, to local defect states in crystals, and on to microelectronic devices addressable with wire interconnects. Materials issues arise in all of these, and this issue of MRS Bulletin describes how materials challenges and opportunities arise and have been used to make qubit-based quantum circuits using very different materials systems. In this overview article, we first review the universal ideas of how information is introduced and processed in a quantum computer. Comparing quantum to classical computers, for a given number of bits, the information content in a quantum computer is exponentially larger. But quantum computers face a daunting challenge: How do we keep the information from degrading and eventually disappearing? Maintaining the coherence of a quantum computer comes down to specific materials issues for all the approaches studied so far. Advances in materials design and processing have enabled enormous increases in performance, and we review the work described in each of the articles in this issue.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Materials issues for quantum computation
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Materials issues for quantum computation
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Materials issues for quantum computation
      Available formats
      ×
Copyright
References
Hide All
1.Feynman, R.P., Int. J. Theor. Phys. 21, 467 (1982).
2.Shor, P.W., SIAM J. Comput. 26, 1484 (1997).
3.Rivest, R.L., Sharmir, A., Adleman, L., Commun. ACM 21, 120 (1978).
4.Grover, L., Proceedings of 28th Annual ACM Symposium on Theory of Computing (STOC), 212 (1996).
5.Lloyd, S., Science 273, 1073 (1996).
6.Nielsen, M.A., Chuang, I.L., Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, UK, 2000).
7.Ruggiero, B., Delsing, P., Granata, C., Pashkin, Y., Silvestrini, P., Quantum Computation in Solid State Systems (Springer, New York, 2006).
8.Mermin, N.D., Quantum Computer Science: An Introduction (Cambridge University Press, Cambridge, UK, 2007).
9.Landauer, R., Physics Today 44(5), 23 (1991).
10.DiVincenzo, D.P., Loss, D., Superlattices Microstruct. 223, 419 (1998).
11.DiVincenzo, D.P., Fortshritte der Physik 48, 771 (2000).
12.Vandersypen, L.M.K., Steffen, M., Breyta, G., Yannoni, C.S., Sherwood, M.H., Chuang, I.L., Nature 414, 883 (2001).
13.Jones, J.A., Prog. Nucl. Magn. Reson. Spectrosc. 59, 91 (2011).
14.Schrödinger, E., Born, M., Mathematical Proceedings of the Cambridge Philosophical Society 31, 555 (1935).
15.Shor, P.W., Phys. Rev. A 52, R2493 (1995).
16.Einstein, A., Podolsky, B., Rosen, N., Phys. Rev. 47, 777 (1935).
17.Brandt, H.E., Prog. Quantum Electron. 22, 257 (1998).
18.Fowler, A.G., Mariantoni, M., Martinis, J.M., Cleland, A.N., Phys. Rev. A 86, 032324 (2012).
19.Wikipedia, “Blochsphere,” available athttp://en.wikipedia.org/wiki/File:Blochsphere.svg.
20.DiCarlo, L., Chow, J.M., Gambetta, J.M., Bishop, L.S., Johnson, B.R., Schuster, D.I., Majer, J., Blais, A., Frunzio, L., Girvin, S.M., Schoelkopf, R.J., Nature, 460, 240 (2009).
21.Eriksson, M., Silicon Nanostructures, available at http://uw.physics.wisc.edu/∼eriksson/images/research/nanostructures.jpg.
22.Yirka, B., Phys. Org. (2013), available at http://phys.org/news/2012-04-evidence-majorana-fermions.html.
23.Luleå University of Technology, “Quantum Bits in Quantum Computers,” available athttp://www.ltu.se/research/subjects/Tillampad-fysik/Forskningsprojekt/Elektronstrukturteori/Kvantbitar-i-kvantdatorer-1.105526?l=en.
24.Softpedia, “New Ion Trap May Lead to Large Quantum Computers,” available athttp://news.softpedia.com/news/New-Ion-Trap-May-Lead-To-Large-Quantum-Computers-29646.shtml.
25.Störmer, H.L., Dingle, R., Gossard, A.C., Wiegmann, W., Sturge, M.D., Solid State Comm. 29, 705 (1979).
26.Simmons, C.B., Prance, J.R., Van Bael, B.J., Koh, T.S., Shi, Z., Savage, D.E., Lagally, M.G., Joynt, R., Friesen, M., Coppersmith, S.N., Eriksson, M.A., Phys. Rev. Lett. 106, 156804 (2011).
27.Mooney, P., Mat. Sci. & Eng. R-Reports 17, 105 (1996).
28.Lai, K., Pan, W., Tsui, D.C., Lyon, S., Mühlberger, M., Schäffler, F., Phys. Rev. Lett. 96, 076805 (2006).
29.Kasper, E., Herzog, H.J., Thin Solid Films 44, 357 (1977).
30.Davies, G., Hamer, M.F., Proc. R. Soc. Lond Ser-A 348, 285 (1976).
31.Gali, A., Janzén, E., Deak, P., Kresse, G., Kaxiras, E., Phys. Rev. Lett. 103, 186404 (2009).
32.Manson, N.B., Harrison, J.P., Sellars, M.J., Phys. Rev. B. 74, 104303 (2006).
33.Toyli, D., Christie, D.J., Alkauskas, A., Buckley, B.B., Van de Walle, C.G., Awschalom, D.D., Phys. Rev. X 2, 031001 (2012).
34.Van de Walle, C.G., Neugebauer, J., J. Appl. Phys. 95, 3851 (2004).
35.Heyd, J., Scuseria, G.E., Ernzerhof, M., J. Chem. Phys. 118, 8207 (2003).
36.Heyd, J., Scuseria, G.E., Ernzerhof, M., J. Chem. Phys. 124, 219906 (2006).
37.Van de Walle, C.G., Janotti, A., Phys. Status Solidi B 248, 19 (2011).
38.Falk, A.L., Buckley, B.B., Calusine, G., Koehl, W.F., Dobrovitski, V.V., Politi, A., Zorman, C.A., Feng, P.X.-L., Awschalom, D.D., Nat. Commun. 4, 1819 (2013).
39.Koehl, W.F., Buckley, B.B., Heremans, F.J., Calusine, G., Awschalom, D.D., Nature 479, 84 (2011).
40.Joyce, H.J., Wong-Leung, J., Gao, Q., Tan, H.H., Jagadish, C., Nano Lett. 10, 908 (2010).
41.Lutchyn, R.M., Sau, J.D., Das Sarma, S., Phys. Rev. Lett. 105, 077001 (2010).
42.Mourik, V., Zuo, K., Frolov, S.M., Plissard, S.R., Bakkers, E.P.A.M., Kouwenhoven, L.P., Science 336, 1003 (2012).
43.Stern, A., Lindner, N.H., Science 339, 1179 (2013).
44.Van Duzer, T., Turner, C., Principles of Superconducting Devices and Circuits (Prentice Hall, New Jersey, 1999).
45.Martinis, J.M., Quant. Info. Proc. 8, 81 (2009).
46.Clarke, J., Wilhelm, F.K., Nature 453, 1031 (2008).
47.Blatt, R., Wineland, D.J., Nature 453, 1008 (2008).
48.Blinov, B., Leibfried, D., Monroe, C., Wineland, D.J., Quant. Info. Proc. 3, 45 (2004).
49.Wikipedia, “Ponderomotive Force,” available athttp://en.wikipedia.org/wiki/Ponderomotive_force.
50.Wineland, D.J., Monroe, C., Itano, W.M., Leibfried, D., King, B.E., Meekhof, D.M., J. Res. Natl. Inst. Stand. Tech. 103, 259 (1998).
51.Kane, B.E., Nature 393, 133 (1998).
52.Platzman, P.M., Dykman, M.I., Science 284, 1967 (1999).
53.Puri, S., Kim, N.Y., Yamamoto, Y., “Exciton-Polariton Mediated Universal Quantum Computing,” QM3C.5 (Optical Society of America, 2013).
54.Kok, P., Munro, W.J., Nemoto, K., Ralph, T.C., Dowling, J.P., Milburn, G.J., Rev. Mod. Phys. 79, 135 (2007).
55.Jaksch, D., Zoller, P., Ann. Phys. 315, 52 (2005).
56.Harris, R., Johnson, M.W., Lanting, T., Berkley, A.J., Johansson, J., Bunyk, P., Tolkacheva, E., Ladizinsky, E., Ladizinsky, N., Oh, T., Cioata, F., Perminov, I., Spear, P., Enderud, C., Rich, C., Uchaikin, S., Thom, M.C., Chapple, E.M., Wang, J., Wilson, B., Amin, M.H.S., Dickson, N., Karimi, K., Macready, B., Truncik, C.J.S., Rose, G., Phys. Rev. B 82, 024511 (2010).
57.Boixo, S., Albash, T., Spedalieri, F.M., Chancellor, N., Lidar, D.A., Nat. Commun. 4, 2067 (2012).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed