Skip to main content Accessibility help
×
Home

Mechanical Properties of Bulk Metallic Glasses

  • A. R. Yavari, J. J. Lewandowski and J. Eckert

Abstract

In the absence of dislocation-mediated crystallographic slip, room-temperature deformation in metallic glasses occurs in thin shear bands initially only ∼10 nm thick. A sharp drop in viscosity (shear softening) occurs in deformed glassy matter and facilitates additional flow in existing shear bands. This further localization of plastic flow leads to shearing-off failure without any significant macroscopic plasticity.

However, whereas most bulk metallic glasses fail in this manner, some undergo surprisingly extensive plastic deformation (in some cases, up to 50% or more) in compression or bending. When this occurs, the flow is “jerky,” as indicated by serrated stress–strain curves. Each serration may correspond to the emission of a shear band that then ceases to operate, at least temporarily, despite the predicted shear softening. As elastic energy is converted to heat during shear, temperatures rise sharply at or near shear bands. This heating may lead to the growth of nanocrystals that then block propagation of shear bands and cracks. The understanding of the dependence of mechanical response of metallic glasses on intrinsic (elastic constants, chemistry) and extrinsic factors (shapes, flaws) is the subject of intense current interest.

Copyright

References

Hide All
1.Johnson, W.L., Samwer, K., Phys. Rev. Lett. 95, 195501 (2005).
2.Inoue, A., Shen, B., Koshiba, H., Kato, H., Yavari, A.R., Nature Mater. 2, 661 (2003).
3.Shen, B.L., Inoue, A., J. Phys.: Condens. Matter 17, 5647 (2005).
4.Gu, X.J., McDermott, A.G., Poon, S.J., Shiflet, G.J., Appl. Phys. Lett. 88, 211905 (2006).
5.Inoue, A., Takeuchi, A., Mater. Trans. JIM 43, 1892 (2002).
6.Chen, H.S., Krause, J.T., Coleman, E., J. Non-Cryst. Solids 18, 157 (1975).
7.Ashby, M.F., Greer, A.L., Scripta Mater. 54, 321 (2006).
8.Hajlaoui, K., Yavari, A.R., LeMoulec, A., Botta, W. J., Vaughan, F.G., Das, J., Greer, A.L., Kvick, Å., J. Non-Cryst. Solids 353, 327 (2007).
9.Schroers, J., Johnson, W.L., Phys. Rev. Lett. 93, 255506 (2004).
10.Das, J., Tang, M.B., Kim, K.B., Theissmann, R., Baier, F., Wang, W.H., Eckert, J., Phys. Rev. Lett. 94, 205501 (2005).
11.Inoue, A., Zhang, W., Tsurui, T., Yavari, A.R., Greer, A.L., Philos. Mag. Lett. 85, 221 (2005).
12.Yao, K.F., Ruan, F., Yang, Y.Q., Chen, N., Appl. Phys. Lett. 88, 122106 (2006).
13.Das, J., Kim, K.B., Xu, W., Wei, B.C., Zhang, Z.F., Wang, W.H., Yi, S., Eckert, J., Mater. Trans. JIM 47, 2606 (2006).
14.Lewandowski, J.J., Lowhaphandu, P., Philos. Mag. A 82 (17), 3427 (2002).
15.Sunny, G., Lewandowski, J.J., Prakash, V., J. Mater. Res. 22, 389 (2007).
16.Spaepen, F., Acta Metall. 25, 407 (1977).
17.Sheng, H.W., Luo, W.K., Alamgir, F.M., Bai, J.M., Ma, E., Nature 439, 419 (2006).
18.Miracle, D.B., Nature Mater. 3, 697 (2004).
19.Yavari, A.R., Nature 439, 405 (2006).
20.Egami, T., Intermetallics 14, 882 (2006).
21.Argon, A., Acta Metall. 27, 47 (1979).
22.Schuh, C.A., Lund, A.C., Nature Mater. 2, 449 (2003).
23.Falk, M.L., Langer, J.S., Phys. Rev. E: Stat. Phys., Plasmas, Fluids 57, 7192 (1998).
24.Argon, A.S., J. Phys. Chem. Solids 43, 945 (1982).
25.Torre, F.H. Della, Dubach, A., Siegrist, M.E., Löffler, J.F., Appl. Phys. Lett. 89, 091918 (2006).
26.Lewandowski, J.J., Wang, W.H., Greer, A.L., Philos. Mag. Lett. 85, 77 (2005).
27.Liu, Y.H., Wang, G., Wang, R.J., Zhao, D.Q., Pan, M.X., Wang, W.H., Science 315, 1385 (2007).
28.Hajlaoui, K., Yavari, A.R., Doisneau, B., LeMoulec, A., Botta, W.J., Vaughan, G., Greer, A.L., Inoue, A., Zhang, W., Kvick, A., Scripta Mater. 54, 1829 (2006).
29.Kim, K.B., Das, J., Baier, F., Tang, M.B., Wang, W.H., Eckert, J., Appl. Phys. Lett. 88, 051911 (2006).
30.Xing, L.Q., Li, Y., Ramesh, K.T., Li, J., Hufnagel, T.C., Phys. Rev. B: Condens. Matter 64, 180201 (2001).
31.Das, J., Pauly, S., Duhamel, C., Wei, B.C., Eckert, J., J. Mater. Res. 22, 326 (2007).
32.Lowhaphandu, P., Lewandowski, J.J., Scripta Mater. 38, 1811 (1998).
33.Lewandowski, J.J., Mater. Trans. JIM 42, 633 (2001).
34.Lewandowski, J.J., Shazly, M., Nouri, A. Shamimi, Scripta Mater. 54, 337 (2006).
35.Argon, A.S., Salama, M., Mater. Sci. Eng. 23, 219 (1976).
36.Yavari, A.R., Le Moulec, A., Inoue, A., Nishiyama, N., Lupo, N., Matsubara, E., Botta, W.J., Vaughan, F.G., di Michiel, M., Kvick, A., Acta Mater. 53, 1611 (2005).
37.Lewandowski, J.J., Greer, A.L., Nature Mater. 5, 15 (2006).
38.Yang, B., Liaw, P.K., Morrison, M., Liu, C.T., Buchanan, R.A., Huang, J.Y., Kuo, R.C., Huang, J.G., Fielden, D.E., Intermetallics 13, 419 (2005).
39.Zhang, Y., Stelmashenko, N., Barber, Z., Lewandowski, J.J., Greer, A.L., J. Mater. Res. 22, 419 (2007).
40.Oh, J.C., Ohkubo, T., Kim, Y.C., Fleury, E., Hono, K., Scripta Mater. 53, 165 (2005).
41.Gerling, R., Schimansky, F.P., Wagner, R., Nucl. Sci. Eng. 110, 374 (1992).
42.Choi-Yim, H., Xu, D.H., Lind, M.L., Löffler, J.F., Johnson, W.L., Scripta Mater. 54, 187 (2006).
43.Sergueeva, A.V., Mara, N.A., Kuntz, J.D., Lavernia, E.J., Mukherjee, A.K., Philos. Mag. 85, 2671 (2005).
44.Zhang, Y., Wang, W.H., Greer, A.L., Nature Mater. 5, 857 (2006).
45.Conner, R.D., Dandliker, R.B., Johnson, W.L., Acta Mater. 46, 6089 (1999).
46.Hagiwara, M., Inoue, A., Masumoto, T., Metall. Trans A 13, 373 (1982).
47.Olofinjana, A.O., Davies, H.A., Mater. Sci. Eng., A 186, 143 (1994).

Mechanical Properties of Bulk Metallic Glasses

  • A. R. Yavari, J. J. Lewandowski and J. Eckert

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed