Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T02:13:49.390Z Has data issue: false hasContentIssue false

Microscopy and Microanalysis of Reverse-Osmosis and Nanofiltration Membranes

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

The polyamide active layers of commercial reverse-osmosis and nanofiltration membranes are examples of nanoscale functional materials that challenge the state of the art of materials characterization. The active layer is only ∼100 nm thick, and because the active layer is formed by a process of interfacial polymerization, the structure and composition of the membrane is highly inhomogeneous. Even such basic physical and chemical properties of the membrane as the atomic density, swelling in water, distribution of charged species, and the mobility of water and ions, are poorly understood. In this article, we briefly review progress in the characterization of polyamide separation membranes using transmission electron microscopy, atomic force microscopy, vibrational spectroscopy, positron annihilation, nuclear magnetic resonance, and Rutherford backscattering spectrometry. Advances in the microanalysis methods applicable to these complex materials will advance fundamental understanding of the structure–property relationships of polymer membranes and further the long-term goal of synthesizing membranes with improved performance.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Cadotte, J.E., “Interfacially synthesized reverse osmosis membrane,” U.S. Patent 4,277344 (July 7, 1981).Google Scholar
2.Cadotte, J.E., King, R.S., Majerle, R.J., Petersen, R.J., J. Macromol. Sci. Chem. A15, 727 (1980).Google Scholar
3.Petersen, R.J., J. Membr. Sci. 83, 81 (1993).CrossRefGoogle Scholar
4.Chai, G.-Y., Kranz, W.B., J. Membr. Sci. 93, 175 (1994).CrossRefGoogle Scholar
5.Millich, F., Carraher, C.E. Jr, Interfacial Synthesis (Marcel Dekker, New York, 1977).Google Scholar
6.Hirose, M., Ito, H., Maeda, M., Tanaka, K., “Highly permeable composite reverse osmosis membrane, method of producing the same, and method of using the same,” U.S. Patent 5,614,099 (March 25, 1997).Google Scholar
7.Kwak, S.-Y., Jung, S.G., Kim, S.H., Environ. Sci. Technol. 35, 4334 (2001).CrossRefGoogle Scholar
8.Freger, V., Srebnik, S., J. Appl. Polym. Sci. 88, 1162 (2003).CrossRefGoogle Scholar
9.Freger, V., Langmuir 21, 1884 (2005).CrossRefGoogle Scholar
10.Jansen, L.J.J.M., te Nijenhuis, K., J. Membr. Sci. 65, 59 (1992).CrossRefGoogle Scholar
11.Enkelmann, V., Wegner, G., Appl. Polym. Symp. 26, 365 (1975).Google Scholar
12.Ji, J., Dickson, J.M., Childs, R.F., McCarry, B.E., Macromolecules 33, 624 (2000).CrossRefGoogle Scholar
13.Yashin, V.V., Balazs, A.C., J. Chem. Phys. 121, 11440 (2004).CrossRefGoogle Scholar
14.Freger, V., Langmuir 19, 4791 (2003).CrossRefGoogle Scholar
15.Vrijenhoek, E.M., Hong, S., Elimelech, M., J. Membr. Sci. 188, 115 (2001).CrossRefGoogle Scholar
16.Freger, V., Environ. Sci. Technol. 38, 3168 (2004).CrossRefGoogle Scholar
17.Sundet, S.A., J. Membr. Sci. 76, 175 (1993).CrossRefGoogle Scholar
18.Bartels, C.R., Kreuz, K.L., Wachtel, A., J. Membr. Sci. 32, 291 (1987).CrossRefGoogle Scholar
19.Bason, S., Oren, Y., Freger, V., J. Membr. Sci. 302, 10 (2007).CrossRefGoogle Scholar
20.Schaep, J., Vandecasteele, C., J. Membr. Sci. 188, 129 (2001).CrossRefGoogle Scholar
21.Koo, J.-Y., Petersen, R.J., Cadotte, J.E., Polym. Preprints. Polym. Chem. 27, 391 (1986).Google Scholar
22.Elimelech, M., Zhu, X., Childress, A.E., Hong, S., J. Membr. Sci. 127, 101 (1997).CrossRefGoogle Scholar
23.Sawyer, L.C., Grubb, D.T., Polymer Microscopy (Springer, Berlin, ed. 2, 1995).Google Scholar
24.Bartels, C.R., J. Membr. Sci. 45, 225 (1989).CrossRefGoogle Scholar
25.Tang, C.Y.Y., Kwon, Y.-N., Leckie, J.O., J. Membr. Sci. 287, 146 (2007).CrossRefGoogle Scholar
26.Tang, C.Y.Y., Fu, Q.S., Robertson, A.P., Criddle, C.S., Leckie, J.O., Environ. Sci. Technol. 40, 7343 (2006).CrossRefGoogle Scholar
27.Mi, B., Coronell, O., Mariñas, B.J., Watanabe, F., Cahill, D.G., Petrov, I., J. Membr. Sci. 282, 71 (2006).CrossRefGoogle Scholar
28.Freger, V., Gilron, J., Belfer, S., J. Membr. Sci. 209, 283 (2002).CrossRefGoogle Scholar
29.Freger, V., Bottino, A., Capannelli, G., Perry, M., Gitis, V., Belfer, S., J. Membr. Sci. 256, 134 (2005).Google Scholar
30.Louie, J.S., Pinnau, I., Ciobanu, I., Ishida, K.P., Ng, A., Reinhard, M., J. Membr. Sci. 280, 762 (2006).CrossRefGoogle Scholar
31.Hirose, M., Ito, H., Kamiyama, Y., J. Membr. Sci. 121, 209 (1996).CrossRefGoogle Scholar
32.Singh, S., Khulbe, K.C., Matsuura, T., Ramamurthy, P., J. Membr. Sci. 142, 111 (1998).CrossRefGoogle Scholar
33.Hilal, N., Al-Zoubi, H., Darwish, N.A., Mohammad, A.W., Desalination 177, 187 (2005).CrossRefGoogle Scholar
34.Brant, J.A., Johnson, K.M., Childress, A.E., Colloids Surf. A, Physicochem. Eng. Asp. 280, 45 (2006).CrossRefGoogle Scholar
35.Yamaguchi, T., Ikeda, K., “Composite reverse osmosis membrane and production thereof,” U.S. Patent 5,160,619 (November 3, 1992).Google Scholar
36.Hirose, M., Ikeda, K., “Method of producing high permeable composite reverse osmosis membrane,” U.S. Patent 5,576,057 (November 19, 1996).Google Scholar
37.Mirabella, F.M., Internal Reflection Spectroscopy Theory and Applications, (Marcel Dekker, New York, 1993).Google Scholar
38.Beverly, S., Seal, S., Hong, S., J. Vac. Sci. Technol. A 18, 1107 (2000).CrossRefGoogle Scholar
39.Mi, B., Cahill, D.G., Marinas, B.J., J. Membr. Sci. 291, 77 (2007).CrossRefGoogle Scholar
40.Chennamsetty, R., Escobar, I., Xu, X., Desalination 188, 203 (2006).CrossRefGoogle Scholar
41.Boussu, K., De Baerdemaeker, J., Dauwe, C., Weber, M., Lynn, K.G., Depla, D., Aldea, S., Vankelecom, I.F.J., Vandecasteele, C., Van der Bruggen, B., Chem. Phys. Chem. 8, 370 (2007).CrossRefGoogle Scholar
42.Liu, L., Yu, S., Zhou, Y., Gao, C., J. Membr. Sci. 281, 88 (2006).CrossRefGoogle Scholar
43.Malaisamy, R., Bruening, M.L., Langmuir 21, 10587 (2005).CrossRefGoogle Scholar
44.Belfer, S., Purinson, Y., Kedem, O., Acta Polym. 49, 574 (1998).3.0.CO;2-0>CrossRefGoogle Scholar
45.Belfer, S., Fainshtain, R., Purinson, Y., Gilron, J., Nystrom, M., Manttari, M., J. Membr. Sci. 239, 55 (2004).CrossRefGoogle Scholar
46.Kang, G., Liu, M., Lin, B., Cao, Y., Yuan, Q., Polymer 48, 1165 (2007).CrossRefGoogle Scholar
47.Ivnitsky, H., Katz, I., Minz, D., Shimoni, E., Chen, Y., Tarchitzky, J., Semiat, R., Dosoretz, C.G., Desalination 185, 255 (2005).CrossRefGoogle Scholar
48.Belfer, S., Gilron, J., Kedem, O., Desalination 124, 175 (1999).CrossRefGoogle Scholar
49.Gabelich, C.J., Ishida, K.P., Bold, R.M., Environ. Prog. 24, 410 (2005).CrossRefGoogle Scholar
50.Freger, V., Ben-David, A., Anal. Chem. 77, 6019 (2005).CrossRefGoogle Scholar
51.Ben-David, A., Oren, Y., Freger, V., Environ. Sci. Technol. 40, 7023 (2006).CrossRefGoogle Scholar
52.Ben-David, A., Bason, S., Jopp, J., Oren, Y., Freger, V., J. Membr. Sci. 281, 480 (2006).CrossRefGoogle Scholar
53.McBrierty, V.J., Packer, K.J., Nuclear Magnetic Resonance in Solid Polymers (Cambridge University Press, Cambridge, UK, 1993).CrossRefGoogle Scholar
54.Xu, X., Kirkpatrick, R.J., J. Membr. Sci. 280, 226 (2006).CrossRefGoogle Scholar
55.Bloembergen, N., Purcell, E.M., Pound, R.V., Phys. Rev. 73, 679 (1948).CrossRefGoogle Scholar
56.Shimazu, A., Ikeda, K., Miyazaki, T., Ito, Y., Radiat. Phys. Chem. 58, 555 (2000).CrossRefGoogle Scholar
57.Kim, S. H., Kwak, S., Suzuki, T., Environ. Sci. Technol. 39, 1764 (2005).CrossRefGoogle Scholar
58.Jean, Y.C., Mellon, P.E., Schrader, D.M., Principles and Applications of Positron and Positronium Chemistry, 3 (World Scientific, Singapore, 2003).CrossRefGoogle Scholar
59.Chu, W.K., Mayer, J.W., Nicolet, M.-A., Backscattering Spectrometry (Academic Press, New York, 1978).CrossRefGoogle Scholar
60.Feldman, L.C., Mayer, J.W., Fundamentals of Thin Film and Surface Analysis (New HollandElsevier, New York, 1986).Google Scholar
61.Oura, K., Lifshits, V.G., Saranin, A.A., Zotov, A.V., Katayama, M., Surface Science: An Introduction (Springer, Berlin, 2003).CrossRefGoogle Scholar
62.Mayer, M., “SIMNRA User's Guide,” Rep. No. IPP 9/113 (Max Planck Institute for Plasmaphysics, Garching, Germany, 1997).Google Scholar
63.Coronell, O., Marinas, B.J., Zhang, X., Cahill, D.G., Proc. 2007 Am. Water Works Assoc. Membr. Technol. Conf. (Tampa, Fla., March 18–21, 2007).Google Scholar
64.Mi, B., Marinas, B.J., Cahill, D.G., Environ. Sci. Technol. 41, 3290 (2007).CrossRefGoogle Scholar