Skip to main content Accessibility help

Modeling twinning, detwinning, and dynamic recrystallization of magnesium alloys

  • Huamiao Wang (a1), Shuangming Li (a2), Dayong Li (a3), Gwénaëlle Proust (a4), Yixiang Gan (a5), Kun Yan (a6), Ding Tang (a7), Peidong Wu (a8) and Yinghong Peng (a9)...


Magnesium alloys usually lack “operative deformation slip mechanisms” because of their hexagonal close-packed structure. Therefore, the mechanical behavior of magnesium alloys at different temperatures is dictated by other deformation mechanisms such as twinning, detwinning, secondary twinning, or dynamic recrystallization (DRX). Twinning and DRX can affect the development of grain size and orientation distribution, as well as the deformation behavior of magnesium alloys. The current understanding of the mechanisms and mechanics of these different deformation modes and their implementation in crystal plasticity-based modeling are highlighted in this article. Future directions in the development of constitutive models are also discussed.



Hide All
1.Pollock, T.M., Science 328, 986 (2010).
2.Proust, G., Science 364, 30 (2019).
3.Christian, J.W., Mahajan, S., Prog. Mater. Sci. 39, 1 (1995).
4.Yu, Q., Jiang, Y., Wang, J., Scr. Mater. 96, 41 (2015).
5.Roberts, C.S., Magnesium and Its Alloys (Wiley, New York, 1960).
6.Lou, X.Y., Li, M., Boger, R.K., Agnew, S.R., Wagoner, R.H., Int. J. Plast. 23, 44 (2007).
7.Yu, Q., Zhang, J.X., Jiang, Y.Y., Philos. Mag. Lett. 91, 757 (2011).
8.Jain, A., Agnew, S.R., Mater. Sci. Eng. A 462, 29 (2007).
9.Al-Samman, T., Li, X., Mater. Sci. Eng. A 527, 3450 (2010).
10.Tang, T., Zhou, G., Li, Z., Li, D., Peng, L., Peng, Y., Wu, P., Wang, H., Lee, M.G., Int. J. Plast. 116, 159 (2019).
11.Al-Samman, T., Molodov, K.D., Molodov, D.A., Gottstein, G., Suwas, S., Acta Mater. 60, 537 (2012).
12.Stanford, N., Callaghan, M.D., de Jong, B., Mater. Sci. Eng. A 565, 459 (2013).
13.Liu, X., Jonas, J.J., Li, L.X., Zhu, B.W., Int. J. Plast. 27, 1916 (2013).
14.Asaro, R.J., Needleman, A., Acta Metall . 33, 923 (1985).
15.Tomé, C.N., Lebensohn, R.A., Kocks, U.K., Acta Metall. Mater. 39, 2667 (1991).
16.Dawson, P.R., MacEwen, S.R., Wu, P.D., Int. Mater. Rev. 48, 86 (2003).
17.Taylor, G.I., J. Inst. Met. 62, 307 (1938).
18.Lebensohn, R.A., Tomé, C.N., Acta Metall. Mater. 41, 2611 (1993).
19.Wang, J., Hirth, J.P., Tomé, C.N., Acta Mater . 57, 5521 (2009).
20.Wang, J., Beyerlein, I.J., Tomé, C.N., Int. J. Plast. 56, 156 (2014).
21.Beyerlein, I.J., Capolungo, L., Marshall, P.E., McCabe, R.J., Tomé, C.N., Philos. Mag. 90, 2161 (2010).
22.Niezgoda, S.R., Kanjarla, A.K., Beyerlein, I.J., Tomé, C.N., Int. J. Plast. 56, 119 (2014).
23.Van Houtte, P., Acta Metall. Mater. 26, 591 (1978).
24.Tomé, C.N., Maudlin, P.J., Lebensohn, R.A., Kaschner, G.C., Acta Mater . 49, 3085 (2001).
25.Agnew, S.R., Duygulu, O., Int. J. Plast. 21, 1161 (2005).
26.Wang, H., Raeisinia, B., Wu, P.D., Agnew, S.R., Tomé, C.N., Int. J. Solids Struct. 47, 2905 (2010).
27.Kalidindi, S.R., J. Mech. Phys. Solids 46, 267 (1998).
28.Proust, G., Tomé, C.N., Kaschner, G.C., Acta Mater . 55, 2137 (2007).
29.Proust, G., Tomé, C.N., Jain, A., Agnew, S.R., Int. J. Plast. 25, 861 (2009).
30.Wu, P.D., Guo, X.Q., Qiao, H., Lloyd, D.J., Mater. Sci. Eng. A 625, 140 (2015).
31.Qiao, H., Barnett, M.R., Wu, P.D., Int. J. Plast. 86, 70 (2016).
32.Xin, R., Liu, Z., Sun, Y., Wang, H., Guo, C., Ren, W., Liu, Q., Int. J. Plast. (2019), doi:10.1016/j.ijplas.2019.07.018.
33.Wang, H., Wu, P.D., Tomé, C.N., Wang, J., Mater. Sci. Eng. A 555, 93 (2012).
34.Wang, H., Wu, P.D., Wang, J., Tomé, C.N., Int. J. Plast. 49, 36 (2013).
35.Guo, X.Q., Wu, W., Wu, P.D., Qiao, H., An, K., Liaw, P.K., Scr. Mater. 69, 319 (2013).
36.Qiao, H., Agnew, S.R., Wu, P.D., Int. J. Plast. 65, 61 (2015).
37.Wang, H., Clausen, B., Capolungo, L., Beyerlein, I.J., Wang, J., Tomé, C.N., Int. J. Plast. 79, 275 (2016).
38.Wang, H., Wu, P.D., Kurukuri, S., Worswick, M.J., Peng, Y., Tang, D., Li, D., Int. J. Plast. 107, 207 (2018).
39.Ma, C., Wang, H., Hama, T., Guo, X., Mao, X., Wang, J., Wu, P.D., Int. J. Plast. 121, 261 (2019).
40.Ma, Q., El Kadiri, H., Oppedal, A.L., Baird, J.C., Horstemeyer, M.F., Cherkaoui, M., Scr. Mater. 64, 813 (2011).
41.Niknejad, S., Esmaeili, S., Zhou, N.Y., Acta Mater . 102, 1 (2016).
42.Qiao, H., Guo, X.Q., Hong, S.G., Wu, P.D., J. Alloys Compd. 725, 96 (2017).
43.Doherty, R.D., Prog. Mater. Sci. 42, 39 (1997).
44.Sakai, T., Belyakov, A., Kaibyshev, R., Miura, H., Jonas, J.J., Prog. Mater. Sci. 60, 130 (2014).
45.Park, C.H., Oh, C.-S., Kim, S., Mater. Sci. Eng. A 542, 127 (2012).
46.Zhou, G., Li, Z., Li, D., Peng, Y., Wang, H., Wu, P.D., Mater. Sci. Eng. A 730, 438 (2018).
47.Liu, Y., Li, N., Shao, S., Gong, M., Wang, J., McCabe, R.J., Jiang, Y., Tomé, C.N., Nat. Commun. 7, 11577 (2016).

Modeling twinning, detwinning, and dynamic recrystallization of magnesium alloys

  • Huamiao Wang (a1), Shuangming Li (a2), Dayong Li (a3), Gwénaëlle Proust (a4), Yixiang Gan (a5), Kun Yan (a6), Ding Tang (a7), Peidong Wu (a8) and Yinghong Peng (a9)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed