Skip to main content

Multiscale simulation of enhanced water flow in nanotubes

  • Matthew K. Borg (a1) and Jason M. Reese (a2)

Nanotubes (NTs) with diameters less than 2 nm have been proposed for next-generation reverse osmosis membranes. At this molecular scale, the NTs are narrow enough to block salt ions and other contaminants, but still wide enough to allow water to flow along the NTs at seemingly unprecedented rates. Simulations for design of NT membranes can be challenging. On the one hand, the standard equations for water flow through pipes are not applicable at sub-2-nm scales due to the dominance of non-continuum phenomena; on the other hand, full molecular simulations are computationally intractable for flows up to laboratory or prototype scales. This article describes recent multiscale approaches to simulating flows through aligned NT membranes of various materials. These multiscale techniques offer a unique and economical solution that can shed light on sometimes conflicting experimental results and point the way to future engineering design of nanostructured membranes.

Hide All
1. Lee K.P., Arnot T.C., Mattia D., J. Membr. Sci. 370, 1 (2011).
2. Falk K., Sedlmeier F., Joly L., Netz R.R., Bocquet L., Nano Lett. 10, 4067 (2010).
3. Thomas M., Corry B., Philos. Trans. R. Soc. Lond. A 374, 1 (2015).
4. Majumder M., Chopra N., Andrews R., Hinds B.J., Nature 438, 44 (2005).
5. Holt J.K., Park H.G., Wang Y., Stadermann M., Artyukhin A.B., Grigoropoulos C.P., Noy A., Bakajin O., Science 312, 1034 (2006).
6. Du F., Qu L., Xia Z., Feng L., Dai L., Langmuir 27, 8437 (2011).
7. Qin X., Yuan Q., Zhao Y., Xie S., Liu Z., Nano Lett. 11, 2173 (2011).
8. Holland D.M., Lockerby D.A., Borg M.K., Nicholls W.D., Reese J.M., Microfluid. Nanofluid. 18, 461 (2014).
9. Lockerby D.A., Duque-Daza C.A., Borg M.K., Reese J.M., J. Comput. Phys. 237, 344 (2013).
10. Lockerby D.A., Patronis A., Borg M.K., Reese J.M., J. Comput. Phys. 284, 261 (2015).
11. Borg M.K., Lockerby D.A., Reese J.M., J. Fluid Mech. 768, 388 (2014).
12. Borg M.K., Lockerby D.A., Reese J.M., J. Comput. Phys. 233, 400 (2013).
13. Patronis A., Lockerby D.A., Borg M.K., Reese J.M., J. Comput. Phys. 255, 558 (2013).
14. Docherty S.Y., Borg M.K., Lockerby D.A., Reese J.M., Int. J. Heat Fluid Flow 50, 114 (2014).
15. Docherty S.Y., Borg M.K., Lockerby D.A., Reese J.M., Int. J. Heat Mass Transf. 98, 712 (2016).
16. Kevrekidis I.G., Gear C.W., Hyman J.M., Kevrekidis P.G., Runborg O., Theodoropoulos C., Commun. Math. Sci. 1, 715 (2003).
17. Nicholls W.D., Borg M.K., Lockerby D.A., Reese J.M., Microfluid. Nanofluid. 12, 257 (2012).
18. Borg M.K., Lockerby D.A., Reese J.M., Microfluid. Nanofluid. 15, 541 (2013).
19. Ritos K., Borg M.K., Lockerby D.A., Emerson D.R., Reese J.M., Microfluid. Nanofluid. 19, 997 (2015).
20. Stephenson D., Lockerby D.A., Borg M.K., Reese J.M., Microfluid. Nanofluid. 18, 841 (2014).
21. Nicholls W.D., Borg M.K., Lockerby D.A., Reese J.M., Mol. Simul. 38, 781 (2012).
22. Walther J.H., Ritos K., Cruz-Chu E.R., Megaridis C.M., Koumoutsakos P., Nano Lett. 13, 1910 (2013).
23. Stephenson D., Kermode J.R., Lockerby D.A, Fluid Dyn. (2016),
24. Ritos K., Mattia D., Calabrò F., Reese J.M., J. Chem. Phys. 140, 014702 (2014).
25. Baek Y., Kim C., Seo D.K., Kim T., Lee J.S., Kim Y.H., Ahn K.H., Bae S.S., Lee S.C., Lim J., Lee K., Yoon J., J. Membr. Sci. 460, 171 (2014).
26. Lee B., Baek Y., Lee M., Jeong D.H., Lee H.H., Yoon J., Kim Y.H., Nat. Commun. 6, 7109 (2015).
27. Liu L., Patey G.N., J. Chem. Phys. 141, 18C518 (2014).
28. Thomas M., Corry B., Microfluid. Nanofluid. 18, 41 (2015).
29. Ritos K., Dongari N., Borg M.K., Zhang Y., Reese J.M., Langmuir 29, 6936 (2013).
30. Kim S., Fornasiero F., Park H.G., In J.B., Meshot E., Giraldo G., Stadermann M., Fireman M., Shan J., Grigoropoulos C.P., Bakajin O., J. Membr. Sci. 460, 91 (2014).
31. Majumder M., Chopra N., Hinds B.J., ACS Nano 5, 3867 (2011).
32. Thomas J.A., McGaughey A.J.H., Nano Lett. 8, 2788 (2008).
33. Thomas J.A., McGaughey A.J.H., Phys. Rev. Lett. 102, 184502 (2009).
34. Elimelech M., Phillip W.A., Science 333, 712 (2011).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 18
Total number of PDF views: 174 *
Loading metrics...

Abstract views

Total abstract views: 982 *
Loading metrics...

* Views captured on Cambridge Core between 12th April 2017 - 23rd February 2018. This data will be updated every 24 hours.