Skip to main content Accessibility help

Nanoconfined light metal hydrides for reversible hydrogen storage

  • Petra E. de Jongh (a1), Mark Allendorf (a2), John J. Vajo (a3) and Claudia Zlotea (a4)

Nano-sizing and scaffolding have emerged in the past decade as important strategies to control the kinetics, reversibility, and equilibrium pressure for hydrogen storage in light metal hydride systems. Reducing the size of metal hydrides to the nanometer range allows fast kinetics for both hydrogen release and subsequent uptake. Reversibility of the hydrogen release is impressively facilitated by nanoconfining the materials in a carbon or metal–organic framework scaffold, in particular for reactions involving multiple solid phases, such as the decomposition of LiBH4, NaBH4, and NaAlH4. More complex is the impact of nanoconfinement on phase equilibria. It is clear that equilibrium pressures, and even decomposition pathways, are changed. However, further experimental and computational studies are essential to understand the exact origins of these effects and to unravel the role of particle size, physical confinement, and interfaces. Nevertheless, it has become clear that nanoconfinement is a strong tool to change physicochemical properties of metal hydrides, which might not only be of relevance for hydrogen storage, but also for other applications such as rechargeable batteries.

Hide All Jongh, P.E., Adelhelm, P., ChemSusChem 3, 1332 (2010).
2.Fichtner, M., PCCP 13, 21186 (2011).
3.Nielsen, T.K., Besenbacher, F., Jensen, T.R., Nanoscale 3, 2086 (2011).
4.Vajo, J.J., Curr. Opin. Solid State Mater. Sci. 15, 52 (2012).
5.Roduner, E., Chem. Soc. Rev. 35, 583 (2006).
6.Kim, K.C., Dai, B., Johnson, J.K., Sholl, D.S., Nanotechnology 20, 204001 (2009).
7.Wagemans, R.W.P., van Lenthe, J.H., de Jongh, P.E., van Dillen, A.J., de Jong, K.P., J. Am. Chem. Soc. 127, 16675 (2005).
8.Cheung, S., Deng, W.Q., van Duin, A.C.T., Goddard, W.A., J. Phys. Chem. A 109, 851 (2005).
9.Oates, W.A., J. Less-Common Met. 88, 411 (1982).
10.Pundt, A., Kirchheim, R., Ann. Rev. Mater. Res. 36, 555 (2006).
11.Yamauchi, M., Ikeda, R., Kitagawa, H., Takata, M., J. Phys. Chem. C 112, 3294 (2008).
12.Zlotea, C., Cuevas, F., Paul-Boncour, V., Leroy, E., Dibandjo, P., Gadiou, R., Vix-Guterl, C., Latroche, M., J. Am. Chem. Soc. 132, 7720 (2010).
13.Wu, C., Cheung, H.-M., J. Mater. Chem. 20, 5390 (2010).
14.Adelhelm, P., de Jongh, P.E., J. Mater. Chem. 21, 2417 (2011).
15.Baldé, C.P., Hereijgers, B.P.C., Bitter, J.H., de Jong, K.P., Angew. Chem. Int. Ed. 45, 3501 (2006).
16.Cahen, S., Eymery, J.B., Janot, R., Tarascon, J.-M., J. Power Sources 189, 902 (2009).
17.Bhakta, R.K., Herberg, J.L., Jacobs, B., Highley, A., Behrens, R., Ockwig, N.W.G., Allendorf, M.D., J. Am. Chem. Soc. 131, 13198 (2009).
18.Zhang, S., Gross, A.F., van Atta, S.L., Lopez, M., Liu, P., Ahn, C.C., Vajo, J.J., Jensen, C.M., Nanotechnology 20, 204027 (2009).
19.Nielsen, T.K., Manickam, K., Hirscher, M., Besenbacher, F., Jensen, T.R., ACS Nano 3, 3521 (2009).
20.Zlotea, C., Chevalier-Cesar, C., Leonel, E., Leroy, E., Cuevas, F., Dibandjo, P., Vix-Guterl, C., Martens, T., Latroche, M., Faraday Discuss. 151, 117 (2011).
21.Zheng, S., Fang, F., Zhou, G., Chen, G., Ouyang, L., Zhu, M., Sun, D., Chem. Mater. 20, 3954 (2008). Jongh, P.E., Wagemans, R.W.P., Eggenhuisen, T.M., Dauvillier, B.S., Radstake, P.B., Meeldijk, J.D., Geus, J.W., de Jong, K.P..,Chem. Mater. 19, 6052 (2007).
23.Gross, A.F., Vajo, J.J.. van Atta, S.L., Olson, G.L., J. Phys. Chem. C 112, 5651 (2008).
24.Stephens, R.D., Gross, A.F., van Atta, S.L., Vajo, J.J., Pinkerton, F.E., Nanotechnology 20, 204018 (2009).
25.Adelhelm, P., Gao, J., Verkuijlen, M.H.W., Rongeat, C., Herrich, M., van Bentum, P.J.M., Gutfleisch, O., Kentgens, A.P.M., de Jong, K.P., de Jongh, P.E., Chem. Mater. 22, 2233 (2010).
26.Nielsen, T.K., Polanski, M., Zasada, D., Javadian, P., Besenbacher, F., Bystrzycki, J., Skibsted, J., Jensen, T.R., ACS Nano 5, 4056 (2011).
27.Gross, A.F., Ahn, C.C., Van Atta, S.L., Liu, P., Vajo, J.J., Nanotechnology 20, 204005 (2009).
28.Bogerd, R., Adelhelm, P., Meeldijk, J.H., de Jong, K.P., de Jongh, P.E., Nanotechnology 20, 204019 (2009).
29.Paskevicius, M., Sheppard, D.A., Buckley, C.E., J. Am. Chem. Soc. 132, 5077 (2010).
30.Psofogiannakis, G.M., Froudakis, G.E., Chem. Commun. 47, 7933 (2011).
31.Konarova, M., Tanksale, A., Norberto Beltramini, J., Qing Lu, G., Nano Energy 2, 12 (2012).
32.Zhao-Karger, Z., Hu, J.J., Roth, A., Wang, D., Kubel, C., Lohstroh, W., Fichtner, M., Chem. Commun. 46, 8353 (2010).
33.Zlotea, C., Cuevas, F., Andrieux, J., Ghimbeu, C.M., Leroy, E., Léonel, E., Sengmany, S., Guterl, C.V., Gadiou, R., Martens, T., Latroche, M., Nano Energy 2, 12 (2012).
34.Bogdanović, B., Schwickardi, M., J. Alloys Comp. 253254, 1 (1997).
35.Schüth, F., Bogdanović, B., Taguchi, B., US Patent W02005/014469 (2003).
36.Baldé, C.P., Hereijgers, B.P.C., Bitter, J.H., de Jong, K.P., J. Am. Chem. Soc. 130, 6761 (2008).
37.Nielsen, T.K., Javadian, P., Polanski, M., Besenbacher, F., Bystrzycki, J., Jensen, T.R., J. Phys. Chem. C 116, 21046 (2012).
38.Gao, J., Ngene, P., Lindemann, I., Gutfleisch, O., de Jong, K.P., de Jongh, P.E., J. Mater. Chem. 22, 13209 (2012).
39.Berseth, P., Harter, A.G., Zidan, R., Blomqvist, A., Moyses Araujo, C., Scheicher, R.H., Ahuja, R., Jena, P., Nano Lett. 9, 1501 (2009).
40.Lohstroh, W., Roth, A., Hahn, H., Fichtner, M., ChemPhysChem 11, 789 (2010).
41.Gao, J., Adelhelm, P., Verkuijlen, M.H.W., Rongeat, C., Herrich, M., van Bentum, P.J.M., Gutfleisch, O., Kentgens, A.P.M., de Jong, K.P., de Jongh, P.E., J. Phys. Chem. C 114, 4674 (2010).
42.Mueller, T., Ceder, G., ACS Nano 4, 5647 (2010).
43.Majzoub, E.H., Zhou, F., Ozoliņš, V., J. Phys. Chem. C 115, 2636 (2011).
44.Orimo, S., Nakamori, Y., Kitagawa, G., Miwa, K., Ohba, N., Towatat, S., Züttel, A., J. Alloys Comp. 404, 427 (2005).
45.Shane, D.T., Corey, R.L., McIntosh, C., Rayhel, L.H., Bowman, R.C. Jr., Vajo, J.J., Gross, A.F., Conradi, M.S., J. Phys. Chem. C 114, 4008 (2010).
46.Verkuijlen, M.H.W., Ngene, P., de Kort, D.W., Barre, C., Nale, A., van Eck, E.R.H., van Bentum, P.J.M., de Jongh, P.E., Kentgens, A.P.M., J. Phys. Chem. C. 116, 22169 (2012).
47.Ngene, P., Verkuijlen, M.H.W., Zheng, Q., Kragten, J., van Bentum, P.J.M., Bitter, J.H., de Jongh, P.E., Faraday Discuss. 151, 47 (2011).
48.Liu, X., Peaslee, D., Jost, C.Z., Baumann, T.F., Majzoub, E.H., Chem. Mater. 23, 1331 (2011).
49.Teprovich, J.A. Jr, Wellons, M.S., Lascola, R., Hwang, S.-J., Ward, P.A., Compton, R.N., Zidan, R., Nano Lett. 12, 582 (2012).
50.Adelhelm, P., de Jong, K.P., de Jongh, P.E., Chem. Commun. 41, 6261 (2009).
51.Ferey, G., Chem. Soc. Rev. 37, 191 (2008).
52.Zlotea, C., Campesi, R., Cuevas, F., Leroy, E., Dibandjo, P., Volkringer, C., Loiseau, T., Ferey, G., Latroche, M., J. Am. Chem. Soc. 132, 2991 (2010).
53.Lim, D.-W., Roon, J.W., Ryu, K.Y., Suh, M.P., Angew. Chem. Int. Ed. 51, 9814 (2012).
54.Bhakta, R.K., Maharrey, S., Stavila, V., Highley, A., Alam, T., Majzoub, E., M. Allendorf, , PCCP 14, 8160 (2012).
55.Sun, W.W., Li, S., Mao, J., Guo, Z., Liu, H., Dou, S., Yu, X., Dalton Trans. 40, 5673 (2011).
56.Stavila, V., Bhakta, R.K., Alam, T.M., Majzoub, E.H., Allendorf, M.D., ACS Nano (2012); doi:10.1021/nn304514c.
57.Jeon, K.J., Moon, H.R., Ruminski, A.M., Jiang, B., Kisielowski, C., Bardhan, R., Urban, J.J., Nat. Mater. 10, 286 (2011).
58.Christian, M.L., Aguey-Zinsou, K.-F., ACS Nano 6, 7739 (2012).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed