Skip to main content Accessibility help
×
Home

Nanoporous metal by dealloying for electrochemical energy conversion and storage

  • Qing Chen (a1), Yi Ding (a2) and Mingwei Chen (a3)

Abstract

Metallic materials are key for electrochemical energy conversion and storage when they are tailored into electrodes designed for rapid reaction kinetics, high electrical conductivities, and high stability. Nanoporous metals formed by dealloying could meet all of these requirements, as the dealloyed products beckon energy researchers with their fascinating structures and outstanding performance. In this article, we discuss the characteristics of dealloyed materials related to their functions in energy devices. We then review nanoporous metal electrodes for applications in fuel cells, supercapacitors, and batteries to provide insights into selection and design criteria for meeting the diverse needs of energy conversion and storage.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Nanoporous metal by dealloying for electrochemical energy conversion and storage
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Nanoporous metal by dealloying for electrochemical energy conversion and storage
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Nanoporous metal by dealloying for electrochemical energy conversion and storage
      Available formats
      ×

Copyright

References

Hide All
1.Erlebacher, J., Seshadri, R., MRS Bull. 34, 561 (2009).
2.Ding, Y., Chen, M.W., Erlebacher, J., J. Am. Chem. Soc. 126, 6876 (2004).
3.Lang, X.Y., Hirata, A., Fujita, T., Chen, M.W., Nat. Nanotechnol. 6, 232 (2011).
4.Yu, Y., Gu, L., Lang, X., Zhu, C., Fujita, T., Chen, M., Maier, J., Adv. Mater. 23, 2443 (2011).
5.Brandon, N., Brett, D., Philos. Trans. A. Math. Phys. Eng. Sci. 364, 147 (2006).
6.Verbrugge, M.W., Liu, P., J. Electrochem. Soc. 152, D79 (2005).
7.Conway, B.E., Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, (Springer Science & Business Media, 2013).
8.Rahn, C.D., Wang, C.-Y., Battery Systems Engineering (Wiley, 2013).
9.Artymowicz, D.M., Erlebacher, J., Newman, R.C., Philos. Mag. 89, 1663 (2009).
10.Li, R., Sieradzki, K., Phys. Rev. Lett. 68, 1168 (1992).
11.Qian, L.H., Chen, M.W., Appl. Phys. Lett. 91, 83105 (2007).
12.Qi, Z., Weissmüller, J., ACS Nano 7, 5948 (2013).
13.Fujita, T., Guan, P., McKenna, K., Lang, X., Hirata, A., Zhang, L., Tokunaga, T., Arai, S., Yamamoto, Y., Tanaka, N., Ishikawa, Y., Asao, N., Yamamoto, Y., Erlebacher, J., Chen, M., Nat. Mater. 11, 1 (2012).
14.Krekeler, T., Straßer, A.V., Graf, M., Wang, K., Hartig, C., Ritter, M., Weissmüller, J., Mater. Res. Lett. 5, 314 (2017).
15.Mistry, H., Varela, A.S., Kühl, S., Strasser, P., Cuenya, B.R., Nat. Rev. Mater. 1, 16009 (2016).
16.Wang, C., Markovic, N.M., Stamenkovic, V.R., ACS Catal. 2, 891 (2012).
17.Wang, R., Liu, J.G., Liu, P., Bi, X.X., Yan, X.L., Wang, W.X., Ge, X.B., Chen, M.W., Ding, Y., Chem. Sci. 5, 403 (2014).
18.Gasteiger, H.A., Kocha, S.S., Sompalli, B., Wagner, F.T., Appl. Catal. B 56, 9 (2005).
19.Stamenkovic, V.R., Mun, B.S., Arenz, M., Mayrhofer, K.J.J., Lucas, C., Wang, G., Ross, P.N., Markovic, N.M., Nat. Mater. 6, 241 (2007).
20.Koh, S., Strasser, P., J. Am. Chem. Soc. 129, 12624 (2007).
21.Snyder, J., Fujita, T., Chen, M.W., Erlebacher, J., Nat. Mater. 9, 904 (2010).
22.Xu, C., Wang, R., Chen, M.W., Zhang, Y., Ding, Y., Phys. Chem. Chem. Phys. 12, 239 (2010).
23.Wang, R., Xu, C., Bi, X., Ding, Y., Energy Environ. Sci. 5, 5281 (2012).
24.Wang, X., Frenzel, J., Wang, W., Ji, H., Qi, Z., Zhang, Z., Eggeler, G., J. Phys. Chem. C 115, 4456 (2011).
25.Lang, X.Y., Han, G.F., Xiao, B.B., Gu, L., Yang, Z.Z., Wen, Z., Zhu, Y.F., Zhao, M., Li, J.C., Jiang, Q., Adv. Funct. Mater. 25, 230 (2015).
26.Yu, J., Ding, Y., Xu, C., Inoue, A., Sakurai, T., Chen, M., Chem. Mater. 20, 4548 (2008).
27.Chen, X., Si, C., Gao, Y., Frenzel, J., Sun, J., Eggeler, G., Zhang, G.Z., J. Power Sources 273, 324 (2015).
28.Snyder, J., McCue, I., Livi, K., Erlebacher, J., J. Am. Chem. Soc. 134, 8633 (2012).
29.Xu, C., Wang, L., Wang, R., Wang, K., Zhang, Y., Tian, F., Ding, Y., Adv. Mater. 21, 2165 (2009).
30.Xu, C., Zhang, Y., Wang, L., Xu, L., Bian, X., Ma, H., Ding, Y., Chem. Mater. 21, 3110 (2009).
31.Wang, R., Liu, J., Liu, P., Bi, X., Yan, X., Wang, W., Meng, Y., Ge, X., Chen, M., Ding, Y., Nano Res. 7, 1569 (2014).
32.Yan, X., Meng, F., Xie, Y., Liu, J., Ding, Y., Sci. Rep. 2, 941 (2012).
33.Ding, Y., Kim, Y.J., Erlebacher, J., Adv. Mater. 16, 1897 (2004).
34.Wang, R., Wang, C., Cai, W., Ding, Y., Adv. Mater. 22, 1845 (2010).
35.Neurock, M., Janikb, M., Wieckowskic, A., Faraday Discuss. 140, 363 (2008).
36.Li, J., Yin, H.-M., Li, X.-B., Okunishi, E., Shen, Y.-L., He, J., Tang, Z.-K., Wang, W.-X., Yücelen, E., Li, C., Gong, Y., Gu, L., Miao, S., Liu, L.-M., Luo, J., Ding, Y., Nat. Energy 2, 17111 (2017).
37.Guo, H., Yin, H., Yan, X., Shi, S., Yu, Q., Cao, Z., Li, J., Sci. Rep. 6, 39162 (2016).
38.Lang, X.Y., Yuan, H.T., Iwasa, Y., Chen, M.W., Scr. Mater. 64, 923 (2011).
39.Chen, L.Y., Kang, J.L., Hou, Y., Liu, P., Fujita, T., Hirata, A., Chen, M.W., J. Mater. Chem. A 1, 9202 (2013).
40.Chen, L.Y., Hou, Y., Kang, J.L., Hirata, A., Fujita, T., Chen, M.W., Adv. Energy Mater. 3, 851 (2013).
41.Meng, F., Ding, Y., Adv. Mater. 23, 4098 (2011).
42.Hou, Y., Chen, L., Zhang, L., Kang, J., Fujita, T., Jiang, J., Chen, M., J. Power Sources 225, 304 (2013).
43.Lang, X.Y., Zhang, L., Fujita, T., Ding, Y., Chen, M.W., J. Power Sources 197, 325 (2012).
44.Kang, J., Hirata, A., Qiu, H.J., Chen, L., Ge, X., Fujita, T., Chen, M., Adv. Mater. 26, 269 (2014).
45.Kang, J., Hirata, A., Kang, L., Zhang, X., Hou, Y., Chen, L., Li, C., Fujita, T., Akagi, K., Chen, M., Angew. Chem. Int. Ed. Engl. 52, 1664 (2013).
46.Aricò, A.S., Bruce, P., Scrosati, B., Tarascon, J.-M., Van Schalkwijk, W., Nat. Mater. 4, 366 (2005).
47.Rolison, D.R., Long, J.W., Lytle, J.C., Fischer, A.E., Rhodes, C.P., McEvoy, T.M., Bourg, M.E., Lubers, A.M., Chem. Soc. Rev. 38, 226 (2009).
48.Guo, X., Han, J., Zhang, L., Liu, P., Hirata, A., Chen, L., Fujita, T., Chen, M.W., Nanoscale 7, 15111 (2015).
49.Zhang, S., Xing, Y., Jiang, T., Du, Z., Li, F., He, L., Liu, W., J. Power Sources 196, 6915 (2011).
50.Lu, Q., Rosen, J., Zhou, Y., Hutchings, G.S., Kimmel, Y.C., Chen, J.G., Jiao, F., Nat. Commun. 5, 3242 (2014).
51.Peng, Z., Freunberger, S.A., Chen, Y., Bruce, P.G., Science 337 (6094), 563 (2012).
52.Newman, J., Tiedemann, W., AIChE J. 21, 25 (1975).

Keywords

Nanoporous metal by dealloying for electrochemical energy conversion and storage

  • Qing Chen (a1), Yi Ding (a2) and Mingwei Chen (a3)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed