Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-28T11:15:57.041Z Has data issue: false hasContentIssue false

Nanoporous metals by alloy corrosion: Bioanalytical and biomedical applications

Published online by Cambridge University Press:  10 January 2018

Erkin Şeker
Affiliation:
Department of Electrical and Computer Engineering, Multifunctional Nanoporous Metals Group, University of California, Davis, USA; eseker@ucdavis.edu
Wei-Chuan Shih
Affiliation:
Nanobiophotonics Laboratory, and Nanosystem Manufacturing Center, University of Houston, USA; wshih@uh.edu
Keith J. Stine
Affiliation:
University of Missouri–St. Louis, USA; kstine@umsl.edu
Get access

Abstract

Nanoporous metals obtained by dealloying have attracted significant attention for their unusual catalytic properties, and as model materials for fundamental studies of structure–property relationships in a variety of research areas. There has been a recent surge in the use of these metals for biomedical and bioanalytical applications, where many exciting opportunities exist. The goal of this article is to provide a review of recent progress in using nanoporous metals for biological applications, including as biosensors for detecting biomarkers of disease and multifunctional neural interfaces for monitoring and modulating the activity of neural tissue. The article emphasizes the unique properties of nanoporous gold and concludes by discussing its utility in addressing important challenges in biomedical devices.

Type
Dealloyed Nanoporous Materials with Interface-Controlled Behavior
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wu, C., Sun, H., Li, Y., Liu, X., Du, X., Wang, X., Xu, P., Biosens. Bioelectron. 66, 350 (2015).CrossRefGoogle Scholar
Salaj-Kosla, U., Pöller, S., Beyl, Y., Scanlon, M., Beloshapkin, S., Shleev, S., Schuhmann, W., Magner, E., Electrochem. Commun. 16, 92 (2012).CrossRefGoogle Scholar
Sanzó, G., Taurino, I., Antiochia, R., Gorton, L., Favero, G., Mazzei, F., De Micheli, G., Carrara, S., Bioelectrochemistry 112, 125 (2016).CrossRefGoogle Scholar
Yan, X., Wang, X., Zhao, P., Zhang, Y., Xu, P., Ding, Y., Microporous Mesoporous Mater. 161, 1 (2012).CrossRefGoogle Scholar
Xiao, X., Li, H., Wang, M., Zhang, K., Si, P., Analyst 139, 488 (2014).CrossRefGoogle Scholar
Qiu, H., Xu, C., Huang, X., Ding, Y., Qu, Y., Gao, P., J. Phys. Chem. C 112, 14781 (2008).CrossRefGoogle Scholar
Salaj-Kosla, U., Scanlon, M.D., Baumeister, T., Zahma, K., Ludwig, R., Conghaile, P.Ó., MacAodha, D., Leech, D., Magner, E., Anal. Bioanal. Chem. 405, 3823 (2013).CrossRefGoogle Scholar
Siepenkoetter, T., Salaj-Kosla, U., Magner, E., ChemElectroChem 4, 905 (2017).CrossRefGoogle Scholar
Qiu, H., Xu, C., Huang, X., Ding, Y., Qu, Y., Gao, P., J. Phys. Chem. C 113, 2521 (2009).CrossRefGoogle Scholar
Daggumati, P., Appelt, S., Matharu, Z., Marco, M., Seker, E., J. Am. Chem. Soc. 138, 7711 (2016).CrossRefGoogle Scholar
Zhang, L., Chang, H., Hirata, A., Wu, H., Xue, Q.-K., Chen, M., ACS Nano 7, 4595 (2013).CrossRefGoogle Scholar
Fan, H., Guo, Z., Gao, L., Zhang, Y., Fan, D., Ji, G., Du, B., Wei, Q., Biosens. Bioelectron. 64, 51 (2015).CrossRefGoogle Scholar
Li, X., Wang, R., Zhang, X., Microchim. Acta 172, 285 (2011).CrossRefGoogle Scholar
Alla, A.J., d’Andrea, F.B., Bhattarai, J.K., Cooper, J.A., Tan, Y.H., Demchenko, A.V., Stine, K.J., J. Chromatogr. 1423, 19 (2015).CrossRefGoogle Scholar
Ding, C., Li, H., Hu, K., Lin, J.-M., Talanta 80, 1385 (2010).CrossRefGoogle Scholar
Qiu, H.-J., Zhou, G.-P., Ji, G.-L., Zhang, Y., Huang, X.-R., Ding, Y., Colloids Surf. B 69, 105 (2009).CrossRefGoogle Scholar
Patel, J., Radhakrishnan, L., Zhao, B., Uppalapati, B., Daniels, R.C., Ward, K.R., Collinson, M.M., Anal. Chem. 85, 11610 (2013).CrossRefGoogle Scholar
Yu, F., Ahl, S., Caminade, A.M., Majoral, J.P., Knoll, W., Erlebacher, J., Anal. Chem. 78, 7346 (2006).CrossRefGoogle Scholar
Lang, X., Qian, L., Guan, P., Zi, J., Chen, M., Appl. Phys. Lett. 98, 093701 (2011).CrossRefGoogle Scholar
Biener, J., Nyce, G.W., Hodge, A.M., Biener, M.M., Hamza, A.V., Maier, S.A., Adv. Mater. 20, 1211 (2008).CrossRefGoogle Scholar
Qian, L.H., Yan, X.Q., Fujita, T., Inoue, A., Chen, M.W., Appl. Phys. Lett. 90, 153120 (2007).CrossRefGoogle Scholar
Zhao, F., Zeng, J., Parvez Arnob, M.M., Sun, P., Qi, J., Motwani, P., Gheewala, M., Li, C.H., Paterson, A., Strych, U., Raja, B., Willson, R.C., Wolfe, J.C., Lee, T.R., Shih, W.C., Nanoscale 6, 8199 (2014).CrossRefGoogle Scholar
Wi, J.S., Tominaka, S., Uosaki, K., Nagao, T., Phys. Chem. Chem. Phys. 14, 9131 (2012).CrossRefGoogle Scholar
Zeng, J., Zhao, F., Li, M., Li, C.-H., Lee, T.R., Shih, W.-C., J. Mater. Chem. C 3, 247 (2015).CrossRefGoogle Scholar
Wang, H., Kundu, J., Halas, N.J., Angew. Chem. Int. Ed. Engl. 46, 9040 (2007).CrossRefGoogle Scholar
Zhang, L., Song, Y., Fujita, T., Zhang, Y., Chen, M., Wang, T.H., Adv. Mater. 26, 1289 (2014).CrossRefGoogle Scholar
Shih, W.C., Santos, G.M., Zhao, F., Zenasni, O., Arnob, M.M., Nano Lett. 16, 4641 (2016).CrossRefGoogle Scholar
McCurry, D.A., Bailey, R.C., J. Phys. Chem. C 120, 20929 (2016).CrossRefGoogle Scholar
Tan, Y.H., Fujikawa, K., Pornsuriyasak, P., Alla, A.J., Ganesh, N.V., Demchenko, A.V., Stine, K.J., New J. Chem. 37, 2150 (2013).CrossRefGoogle Scholar
Hafez, A.M., Wenclawiak, B.W., Anal. Bioanal. Chem. 405, 1753 (2013).CrossRefGoogle Scholar
Chapman, C.A.R., Goshi, N., Seker, E., Adv. Funct. Mater. (2017), doi: 10.1002/adfm.201703523.Google Scholar
Chapman, C.A.R., Wang, L., Chen, H., Garrison, J., Lein, P.J., Seker, E., Adv. Funct. Mater. 27, 1604631 (2017).CrossRefGoogle Scholar
Kim, Y.H., Kim, G.H., Kim, A.Y., Han, Y.H., Chung, M.-A., Jung, S.-D., J. Neural Eng. 12, 066029 (2015).CrossRefGoogle Scholar
Tan, Y.H., Terrill, S.E., Paranjape, G.S., Stine, K.J., Nichols, M.R., Biomater. Sci. 2, 110 (2014).CrossRefGoogle Scholar
Polat, O., Seker, E., J. Phys. Chem. C 119, 24812 (2015).CrossRefGoogle Scholar
Santos, G.M., Zhao, F., Zeng, J., Shih, W.-C., Nanoscale 6, 5718 (2014).CrossRefGoogle Scholar
Gittard, S., Pierson, B., Ha, C., Wu, C., Narayan, R., Robinson, D., Biotechnol. J. (2010).Google Scholar
Seker, E., Berdichevsky, Y., Staley, K.J., Yarmush, M.L., Adv. Healthc. Mater. 1, 172 (2012).CrossRefGoogle Scholar
Xue, Y., Markmann, J., Duan, H., Weissmüller, J., Huber, P., Nat. Commun. 5, 4237 (2014).CrossRefGoogle Scholar
Liu, K., Bai, Y., Zhang, L., Yang, Z., Fan, Q., Zheng, H., Yin, Y., Gao, C., Nano Lett. 16, 3675 (2016).CrossRefGoogle Scholar
Wang, D., Schaaf, P., J. Mater. Chem. 22, 5344 (2012).CrossRefGoogle Scholar
Liu, Z., Searson, P., J. Phys. Chem. B 110, 4318 (2006).CrossRefGoogle Scholar
Chauvin, A., Stephant, N., Du, K., Ding, J., Wathuthanthri, I., Choi, C.-H., Tessier, P.-Y., El Mel, A.-A., Micromachines 8, 168 (2017).CrossRefGoogle Scholar