Skip to main content

Next-generation electrocaloric and pyroelectric materials for solid-state electrothermal energy interconversion

  • S. Pamir Alpay (a1), Joseph Mantese (a2), Susan Trolier-McKinstry (a3), Qiming Zhang (a4) and Roger W. Whatmore (a5)...

Thin-film electrocaloric and pyroelectric sources for electrothermal energy interconversion have recently emerged as viable means for primary and auxiliary solid-state cooling and power generation. Two significant advances have facilitated this development: (1) the formation of high-quality polymeric and ceramic thin films with figures of merit that project system-level performance as a large percentage of Carnot efficiency and (2) the ability of these newer materials to support larger electric fields, thereby permitting operation at higher voltages. This makes the power electronic architectures more favorable for thermal to electric energy interconversion. Current research targets to adequately address commercial device needs including reduction of parasitic losses, increases in mechanical robustness, and the ability to form nearly freestanding elements with thicknesses in the range of 1–10 μm. This article describes the current state-of-the-art materials, thermodynamic cycles, and device losses and points toward potential lines of research that would lead to substantially better figures of merit for electrothermal energy interconversion.

Hide All
1.Lang, S.B., Ferroelectrics 230, 401 (1999).
2.Whatmore, R.W., Rep. Prog. Phys. 49, 1335 (1986).
3.Muralt, P., Rep. Prog. Phys. 64, 1339 (2001).
4.Guyomar, D., Pruvost, S., Sebald, G., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 279 (2008).
5.Moya, X., Kar-Narayan, S., Mathur, N.D., Nat. Mater. 13, 439 (2014).
6.Scott, J.F., NPG Asia Mater. 5, e72 (2013).
7.Lines, M.E., Glass, A.M., Principles and Applications of Ferroelectrics and Related Materials (Oxford University Press, Oxford, UK, 1977).
8.Glass, A.M., Phys. Rev. 172, 564 (1968).
9.Furukawa, Y., Kitamura, K., Suzuki, E., Niwa, K., J. Cryst. Growth 197, 889 (1999).
10.Akcay, G., Alpay, S.P., Rossetti, G.A., Scott, J.F., J. Appl. Phys. 103 024104 (2008).
11.Zhang, J., Heitmann, A.A., Alpay, S.P., Rossetti, G.A. Jr., J. Mater. Sci. 44, 5263 (2009).
12.Olsen, R.B., Bruno, D.A., Briscoe, J.M., J. Appl. Phys. 58, 4709 (1985).
13.Frood, D.G., Can. J. Phys. 32, 313 (1954).
14.van der Ziel, A., J. Appl. Phys. 45, 4128 (1974).
15.Gonzalo, J.A., Ferroelectrics 11, 423 (1976).
16.Clingman, W.H., Moore, R.G., J. Appl. Phys. 32, 675 (1961).
17.Childress, J.D., J. Appl. Phys. 33, 1793 (1962).
18.Fatuzzo, E., Kiess, H., Nitsche, R., J. Appl. Phys. 37, 510 (1966).
19.Olsen, R.B., Briscoe, J.M., Bruno, D.A., Butler, W.F., Ferroelectrics 38, 975 (1981).
20.Olsen, R.B., J. Energy 6, 91 (1982).
21.Olsen, R.B., Evans, D., J. Appl. Phys. 54, 5941 (1983).
22.Sebald, G., Lefeuvre, E., Guyomar, D., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 538 (2008).
23.Sebald, G., Pruvost, S., Guyomar, D., Smart Mater. Struct. 17, 015012 (2008).
24.Beerman, H.P., Infrared Phys. 15, 225 (1975).
25.Davis, M., Damjanovic, D., Setter, N., J. Appl. Phys. 96, 2811 (2004).
26.Whatmore, R.W., Ainger, F.W., Proc. SPIE 395, 261 (1983).
27.Zhang, Q., Whatmore, R.W., J. Appl. Phys. 94, 5228 (2003).
28.Sussner, H., Horne, D.E., Yoon, D.Y., Appl. Phys. Lett. 32, 137 (1978).
29.Navid, A., Lynch, C.S., Pilon, L., Smart Mater. Struct. 19, 055006 (2010).
30.Shebanov, L., Borman, K., Ferroelectrics 127, 143 (1992).
31.Sebald, G., Seveyrat, L., Guyomar, D., Lebrun, L., Guiffard, B., Pruvost, S., J. Appl. Phys. 100, 124112 (2006).
32.Mischenko, A.S., Zhang, Q., Whatmore, R.W., Scott, J.F., Mathur, N.D., Appl. Phys. Lett. 89, 242912 (2006).
33.Mischenko, A.S., Zhang, Q., Scott, J.F., Whatmore, R.W., Mathur, N.D., Science 311, 1270 (2006).
34.Neese, B., Chu, B.J., Lu, S.G., Wang, Y., Furman, E., Zhang, Q.M., Science 321, 821 (2008).
35.Defay, E., Crossley, S., Kar-Narayan, S., Moya, X., Mathur, N.D., Adv. Mater. 25, 3337 (2013).
36.Liu, P.F., Wang, J.L., Meng, X.J., Yang, J., Dkhil, B., Chu, J.H., New J. Phys. 12, 023035 (2010).
37.Min, G., Rowe, D.M., Kontostavlakis, K., J. Phys. D: Appl. Phys. 37, 1301 (2004).
38.Pirc, R., Kutnjak, Z., Blinc, R., Zhang, Q.M., Appl. Phys. Lett. 98, 021909 (2011).
39.Zhang, Q.M., Bharti, V., Zhao, X., Science 280, 2101 (1998).
40.Lu, S.G., Rozic, B., Zhang, Q.M., Kutnjak, Z., Li, X.Y., Furman, E., Gorny, L.J., Lin, M.R., Malic, B., Kosec, M., Blinc, R., Pirc, R., Appl. Phys. Lett. 97, 162904 (2010).
41.Li, X.Y., Qian, X.S., Lu, S.G., Cheng, J.P., Fang, Z., Zhang, Q.M., Appl. Phys. Lett. 99, 052907 (2011).
42.Parui, J., Krupanidhi, S.B., Phys. Status Solidi RRL 2, 230 (2008).
43.Correia, T.M., Young, J.S., Whatmore, R.W., Scott, J.F., Mathur, N.D., Zhang, Q., Appl. Phys. Lett. 95, 182904 (2009).
44.Mischenko, A.S., Zhang, Q., Whatmore, R.W., Scott, J.F., Mathur, N.D., Appl. Phys. Lett. 89, 242912 (2006).
45.Feng, Z.Y., Shi, D.Q., Zeng, R., Dou, S.X., Thin Solid Films 519, 5433 (2011).
46.Feng, Z.Y., Shi, D.Q., Dou, S.X., Solid State Commun. 151, 123 (2011).
47.Saranya, D., Chaudhuri, A.R., Parui, J., Krupanidhi, S.B., Bull. Mater. Sci. 32, 259 (2009).
48.He, Y., Li, X.M., Gao, X.D., Leng, X., Wang, W., Funct. Mater. Lett. 4, 45 (2011).
49.Rozic, B., Kosec, M., Ursic, H., Holc, J., Malic, B., Zhang, Q.M., Blinc, R., Pirc, R., Kutnjak, Z., J. Appl. Phys. 110, 064118 (2011).
50.Liu, Z.K., Li, X.Y., Zhang, Q.M., Appl. Phys. Lett. 101, 082904 (2012).
51.Whatmore, R.W., Clarke, R., Glazer, A.M., J. Phys. C: Solid State Phys. 11, 3089 (1978).
52.Vopson, M.M., Solid State Commun. 152, 2067 (2012).
53.Scott, J.F., Annu. Rev. Mater. Res. 41, 229 (2011).
54.Jonker, G.H., J. Am. Ceram. Soc. 55, 57 (1972).
55.Carl, K., Hardtl, K.H., Ferroelectrics 17, 473 (1977).
56.Ricote, J., Whatmore, R.W., Barber, D.J., J. Phys.: Condens. Matter 12, 323 (2000).
57.Zhou, K., Boggs, S.A., Ramprasad, R., Aindow, M., Erkey, C., Alpay, S.P., Appl. Phys. Lett. 93, 102908 (2008).
58.Schubring, N.W., Mantese, J.V., Micheli, A.L., Catalan, A.B., Lopez, R.J., Phys. Rev. Lett. 68, 1778 (1992).
59.Kesim, M., Zhang, J., Alpay, S.P., Martin, L., Appl. Phys. Lett. 105, 052901 (2014).
60.He, J.H., Chen, J.C., Zhou, Y.H., Wang, J.T., Energy Convers. Manage. 43, 2319 (2002).
61.Sinyavsky, Y.V., Brodyansky, V.M., Ferroelectrics 131, 321 (1992).
62.Gu, H.M., Qian, X.S., Li, X.Y., Craven, B., Zhu, W.Y., Cheng, A.L., Yao, S.C., Zhang, Q.M., Appl. Phys. Lett. 102, 122904 (2013).
63.Epstein, R.I., Malloy, K.J., J. Appl. Phys. 106, 064509 (2009).
64.Ravindran, S.K.T., Huesgen, T., Kroener, M., Woias, P., Appl. Phys. Lett. 99, 104102 (2011).
65.Kar-Narayan, S., Mathur, N.D., Appl. Phys. Lett. 95, 242903 (2009).
66.Kar-Narayan, S., Mathur, N.D., J. Phys. D: Appl. Phys. 43, 032002 (2010).
67.Crossley, S., McGinnigle, J.R., Kar-Narayan, S., Mathur, N.D., Appl. Phys. Lett. 104, 082909 (2014).
68.Ozbolt, M., Kitanovski, A., Tusek, J., Poredos, A., Int. J. Refrig. 37, 16 (2014).
69.Ozbolt, M., Kitanovski, A., Tusek, J., Poredos, A., Int. J. Refrig. 40, 174 (2014).
70.Randall, C.A., Kim, N., Kucera, J.P., Cao, W.W., Shrout, T.R., J. Am. Ceram. Soc. 8, 677 (1998).
71.Griggio, F., Trolier-McKinstry, S., J. Appl. Phys. 107, 024105 (2010).
72.Bassiri-Gharb, N., Fujii, I., Hong, E., Trolier-McKinstry, S., Taylor, D.V., Damjanovic, D., J. Electroceram. 19, 47 (2007).
73.Griggio, F., Jesse, S., Kumar, A., Ovchinnikov, O., Kim, H., Jackson, T.N., Damjanovic, D., Kalinin, S.V., Trolier-McKinstry, S., Phys. Rev. Lett. 108 157604 (2012).
74.Zhang, J., Cole, M.W., Alpay, S.P., J. Appl. Phys. 108 034105 (2010).
75.Kesim, M.T., Zhang, J., Trolier-McKinstry, S., Mantese, J.V., Whatmore, R.W., Alpay, S.P., J. Appl. Phys. 114, 157604 (2013).
76.Karthik, J., Martin, L.W., Phys. Rev. B: Condens. Matter 84, 024102 (2011).
77.Karthik, J., Martin, L.W., Appl. Phys. Lett. 99, 032904 (2011).
78.Zhang, J., Misirlioglu, I.B., Alpay, S.P., Rossetti, G.A., Appl. Phys. Lett. 100, 222909 (2012).
79.Shi, Y.P., Soh, A.K., Acta Mater. 59, 5574 (2011).
80.Liu, Y., Infante, I.C., Lou, X.J., Dkhil, B., Appl. Phys. Lett. 104, 082901 (2014).
81.Morozovska, A.N., Eliseev, E.A., Svechnikov, G.S., Kalinin, S.V., J. Appl. Phys. 108, 042009 (2010).
82.Chen, L.-Q., Annu. Rev. Mater. Res. 32, 113 (2002).
83.Li, B., Wang, J.B., Zhong, X.L., Wang, F., Zhou, Y.C., J. Appl. Phys. 107, 014109 (2010).
84.Prosandeev, S., Ponomareva, I., Bellaiche, L., Phys. Rev. B: Condens. Matter 78, 052103 (2008).
85.Ponomareva, I., Lisenkov, S., Phys. Rev. Lett. 108, 167604 (2012).
86.Marathe, M., Ederer, C., Appl. Phys. Lett. 104, 212902 (2014).
87.Peng, Q., Cohen, R.E., Phys. Rev. B: Condens. Matter 83, 220103 (2011).
88.Integrated Computational Materials Engineering: A Transformational Discipline for Improved Competitiveness and National Security (The National Academies Press, Washington, DC, 2008).
89.Bai, Y., Han, X., Zheng, X.C., Qiao, L.J., Sci. Rep. 3, 2895 (2013).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 21
Total number of PDF views: 304 *
Loading metrics...

Abstract views

Total abstract views: 932 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st March 2018. This data will be updated every 24 hours.