Skip to main content

Nucleation of open framework materials: Navigating the voids

  • Jeffrey D. Rimer (a1) and Michael Tsapatsis (a2)

Research aimed at designing and optimizing open framework materials for commercial applications tend to focus on two critical objectives: identifying synthesis conditions that yield crystals with tailored physicochemical properties, and unlocking the untapped design space to achieve theoretical structures that far outnumber the list of synthetically realized materials. Accomplishing these goals requires detailed knowledge of nucleation in order to cultivate efficient, facile, and economical methods of controlling crystallization. The vast number of open framework materials that can be engineered through the judicious selection of inorganic or organic building units hold the promise for future discovery of materials with unique and superior properties compared to available porous materials. Herein, we review what is known about the nucleation of open framework crystals, highlighting the voids in our understanding of nucleation pathways, and we offer guidelines for advancing crystal engineering in this exciting area of research.

Hide All
2.Dincǎ M., Dailly A., Liu Y., Brown C.M., Neumann D.A., Long J.R., J. Am. Chem. Soc. 128, 16876 (2006).
3.Furukawa H., Cordova K.E., O’Keeffe M., Yaghi O.M., Science, 341, 974 (2013).
4.Smith B.J., Hwang N., Chavez A.D., Novotney J.L., Dichtel W.R., Chem. Commun. 51, 7532 (2015).
5.Liu Y.Z., Hu C.H., Comotti A., Ward M.D., Science 333, 436 (2011).
6.Davis M.E., Nature 417, 813 (2002).
7.Martinez C., Corma A., Coord. Chem. Rev. 255, 1558 (2011).
8.Snyder M.A., Tsapatsis M., Angew. Chem. Int. Ed. 46, 7560 (2007).
9.Yaghi O.M., O’Keeffe M., Ockwig N.W., Chae H.K., Eddaoudi M., Kim J., Nature 423, 705 (2003).
10.Corma A., Garcia H., Xamena F., Chem. Rev. 110, 4606 (2010).
11.Cote A.P., Benin A.I., Ockwig N.W., O’Keeffe M., Matzger A.J., Yaghi O.M., Science 310, 1166 (2005).
12.Morris R.E., Cejka J., Nat. Chem. 7, 381 (2015).
13.Deem M.W., Pophale R., Cheeseman P.A., Earl D.J., J. Phys. Chem. C 113, 21353 (2009).
14.Colon Y.J., Snurr R.Q., Chem. Soc. Rev. 43, 5735 (2014).
15.Corma A., Rey F., Rius J., Sabater M.J., Valencia S., Nature 431, 287 (2004).
16.Rimer J.D., Kumar M., Li R., Lupulescu A.I., Oleksiak M.D., Catal. Sci. Technol. 4, 3762 (2014).
17.Wilmer C.E., Leaf M., Lee C.Y., Farha O.K., Hauser B.G., Hupp J.T., Snurr R.Q., Nat. Chem. 4, 83 (2012).
18.Smith B.J., Dichtel W.R., J. Am. Chem. Soc. 136, 8783 (2014).
19.De Yoreo J.J., Gilbert P., Sommerdijk N., Penn R.L., Whitelam S., Joester D., Zhang H.Z., Rimer J.D., Navrotsky A., Banfield J.F., Wallace A.F., Michel F.M., Meldrum F.C., Colfen H., Dove P.M., Science 349, 498 (2015).
20.Kashchiev D., J. Chem. Phys. 118, 1837 (2003).
21.Cundy C.S., Cox P.A., Microporous Mesoporous Mater. 82, 1 (2005).
22.Galkin O., Vekilov P.G., Proc. Natl. Acad. Sci. U.S.A. 97, 6277 (2000).
23.Vekilov P.G., Cryst. Growth Des. 10, 5007 (2010).
24.Rimer J.D., Vlachos D.G., Lobo R.F., J. Phys. Chem. B 109, 12762 (2005). Moor P., Beelen T.P.M., van Santen R.A., J. Phys. Chem. B 103, 1639 (1999).
26.Hould N.D., Lobo R.F., Chem. Mater. 20, 5807 (2008).
27.Maldonado M., Oleksiak M.D., Chinta S., Rimer J.D., J. Am. Chem. Soc. 135, 2641 (2013).
28.Ren N., Subotic B., Bronic J., Tang Y., Sikiric M.D., Misic T., Svetlicic V., Bosnar S., Jelic T.A., Chem. Mater. 24, 1726 (2012).
29.Mintova S., Olson N.H., Bein T., Angew. Chem. Int. Ed. 38, 3201 (1999).
30.Mintova S., Olson N.H., Valtchev V., Bein T., Science 283, 958 (1999).
31.Davis T.M., Drews T.O., Ramanan H., He C., Dong J.S., Schnablegger H., Katsoulakis M.A., Kokkoli E., McCormick A.V., Penn R.L., Tsapatsis M., Nat. Mater. 5, 400 (2006).
32.Fedeyko J.M., Rimer J.D., Lobo R.F., Vlachos D.G., J. Phys. Chem. B 108, 12271 (2004).
33.Kumar S., Davis T.M., Ramanan H., Penn R.L., Tsapatsis M., J. Phys. Chem. B 111, 3398 (2007).
34.Rimer J.D., Lobo R.F., Vlachos D.G., Langmuir 21, 8960 (2005).
35.Chien S.-C., Auerbach S.M., Monson P.A., Langmuir 31, 4940 (2015).
36.Kragten D.D., Fedeyko J.M., Sawant K.R., Rimer J.D., Vlachos D.G., Lobo R.F., Tsapatsis M., J. Phys. Chem. B 107, 10006 (2003).
37.Rimer J.D., Trofymluk O., Navrotsky A., Lobo R.F., Vlachos D.G., Chem. Mater. 19, 4189 (2007).
38.Kumar S., Wang Z.P., Penn R.L., Tsapatsis M., J. Am. Chem. Soc. 130, 17284 (2008).
39.Karwacki L., Kox M.H.F., de Winter D.A.M., Drury M.R., Meeldijk J.D., Stavitski E., Schmidt W., Mertens M., Cubillas P., John N., Chan A., Kahn N., Bare S.R., Anderson M., Kornatowski J., Weckhuysen B.M., Nat. Mater. 8, 959 (2009).
40.Penn R.L., Banfield J.F., Science 281, 969 (1998).
41.Li D.S., Nielsen M.H., Lee J.R.I., Frandsen C., Banfield J.F., De Yoreo J.J., Science 336, 1014 (2012).
42.Malani A., Auerbach S.M., Monson P.A., J. Phys. Chem. C 115, 15988 (2011).
43.Verstraelen T., Szyja B.M., Lesthaeghe D., Declerck R., Van Speybroeck V., Waroquier M., Jansen A.P.J., Aerts A., Follens L.R.A., Martens J.A., Kirschhock C.E.A., van Santen R.A., Top. Catal. 52, 1261 (2009).
44.Yang C.-S., Mora-Fonz J.M., Catlow C.R.A., J. Phys. Chem. C 116, 22121 (2012).
45.Zhang X.-Q., Trinh T.T., van Santen R.A., Jansen A.P.J., J. Am. Chem. Soc. 133, 6613 (2011).
46.Yang C.S., Mora-Fonz J.M., Catlow C.R.A., J. Phys. Chem. C 117, 24796 (2013).
47.Park M.B., Lee Y., Zheng A.M., Xiao F.S., Nicholas C.P., Lewis G.J., Hong S.B., J. Am. Chem. Soc. 135, 2248 (2013).
48.Lesthaeghe D., Vansteenkiste P., Verstraelen T., Ghysels A., Kirschhock C.E.A., Martens J.A., Van Speybroeck V., Waroquier M., J. Phys. Chem. C 112, 9186 (2008).
49.Schaack B.B., Schrader W., Schuth T., Angew. Chem. Int. Ed. 47, 9092 (2008).
50.Follens L.R.A., Aerts A., Haouas M., Caremans T.P., Loppinet B., Goderis B., Vermant J., Taulelle F., Martens J.A., Kirschhock C.E.A., Phys. Chem. Chem. Phys. 10, 5574 (2008).
51.Jin L., Auerbach S.M., Monson P.A., J. Phys. Chem. Lett. 3, 761 (2012).
52.Caratzoulas S., Vlachos D.G., Tsapatsis M., J. Am. Chem. Soc. 128, 596 (2006).
53.Navrotsky A., Trofymluk O., Levchenko A.A., Chem. Rev. 109, 3885 (2009).
54.Wu D., Navrotsky A., J. Solid State Chem. 223, 53 (2015).
55.Park K.S., Ni Z., Cote A.P., Choi J.Y., Huang R.D., Uribe-Romo F.J., Chae H.K., O’Keeffe M., Yaghi O.M., Proc. Natl. Acad. Sci. U.S.A. 103, 10186 (2006).
56.Navrotsky A., Proc. Natl. Acad. Sci. U.S.A. 101, 12096 (2004), doi:10.1073/pnas.0404778101.
57.Li M.Y., Dincǎ M., Chem. Mater. 27, 3203 (2015).
58.Oleksiak M., Rimer J.D., Rev. Chem. Eng. 30, 1 (2014).
59.Xie B., Zhang H.Y., Yang C.G., Liu S.Y., Ren L.M., Zhang L., Meng X.J., Yilmaz B., Muller U., Xiao F.S., Chem. Commun. 47, 3945 (2011).
60.Itabashi K., Kamimura Y., Iyoki K., Shimojima A., Okubo T., J. Am. Chem. Soc. 134, 11542 (2012).
61.Eliášová P., Opanasenko M., Wheatley P.S., Shamzhy M., Mazur M., Nachtigall P., Roth J.W., Morris R.E., Čejka J., Chem. Soc. Rev. 44, 7177 (2015).
62.Burkett S.L., Davis M.E., J. Phys. Chem. 98, 4647 (1994).
63.Schoeman B.J., Sterte J., Otterstedt J.E., Zeolites 14, 568 (1994).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 18
Total number of PDF views: 193 *
Loading metrics...

Abstract views

Total abstract views: 530 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 16th January 2018. This data will be updated every 24 hours.