Skip to main content Accessibility help

Origami MEMS and NEMS

  • John Rogers (a1), Yonggang Huang (a2), Oliver G. Schmidt (a3) and David H. Gracias (a4)


In a manner reminiscent of macroscale bending and folding techniques such as origami, the out-of-plane assembly of lithographically micro- and nanopatterned thin films, can be used to fabricate three-dimensional (3D) micro- and nanostructured devices. These 3D devices, including microelectronic circuits, sensors, antennas, metamaterials, robotic, and biomimetic constructs, enable new functionalities and are challenging to fabricate by other methods. In this article, we summarize important features of this set of techniques and the devices assembled thereof, with a focus on functional constructs that have been formed by bending, folding, or buckling. At small size scales, manipulation using manual or even wired probes face daunting practical challenges in terms of cost, scalability, and high-throughput manufacturability; hence we emphasize techniques that manipulate strain in thin films so that they can spontaneously assemble into programmed 3D geometries without the need for any wires or probes.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Origami MEMS and NEMS
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Origami MEMS and NEMS
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Origami MEMS and NEMS
      Available formats



Hide All
1.Syms, R.R.A., Yeatman, E.M., Bright, V.M., Whitesides, G.M., J. Microelectromech. Syst. 12, 387 (2003).
2.Li, X., J. Phys. D Appl. Phys. 41, 193001 (2008).
3.Leong, T.G., Zarafshar, A.M., Gracias, D.H., Small 6, 792 (2010).
4.Randhawa, J.S., Laflin, K.E., Seelam, N., Gracias, D.H., Adv. Funct. Mater. 21, 2395 (2011).
5.Mei, Y.F., Solovev, A.A., Sanchez, S., Schmidt, O.G., Chem. Soc. Rev. 40, 2109 (2011).
6.Shenoy, V.B., Gracias, D.H., Mater. Res. Bull. 13, 847 (2012).
7.Gracias, D.H., Curr. Opin. Chem. Eng. 2, 112 (2013).
8.Peraza-Hernandez, E.A., Hartl, D.J., Malak, R.J., Lagoudas, D.C., Smart Mater. Struct. 23, 094001 (2014).
9.Cavallo, F., Lagally, M.G., Nano Today 10, 538 (2015).
10.Pister, K.S.J., Judy, M.W., Burgett, S.R., Fearing, R.S., Sens. Actuators A 33, 249 (1992).
11.Hui, E.E., Howe, R.T., Rodgers, M.S., Proc. Thirteenth Annu. Int. Conf. on Microelectromech. Syst. (2000), p. 602.
12.Brittain, S.T., Schueller, O.J.A., Wu, H.K., Whitesides, S., Whitesides, G.M., J. Phys. Chem. B 105, 347 (2001).
13.Nojima, T., Saito, K., JSME Int. J. Ser. A 49, 38 (2006).
14.Stewart, I., Nature 448, 419 (2007).
15.Ahn, B.Y., Shoji, D., Hansen, C.J., Hong, E., Dunand, D.C., Lewis, J.A., Adv. Mater. 22, 2251 (2010).
16.In, H.J., Kumar, S., Shao-Horn, Y., Barbastathis, G., Appl. Phys. Lett. 88, 083104 (2006).
17.Baughman, R.H., Shacklette, L.W., Elsenbaumer, R.L., Plichta, E.J., Becht, C., in Molecular Electronics, Lazarev, P.I., Ed. (Springer Netherlands, Dordrecht, 1991), p. 267.
18.Smela, E., Inganas, O., Lundstrom, I., Science 268, 1735 (1995).
19.Hawkes, E., An, B., Benbernou, N.M., Tanaka, H., Kim, S., Demaine, E.D., Rus, D., Wood, R.J., Proc. Natl. Acad. Sci. U.S.A. 107, 12441 (2010).
20.Prinz, V.Y., Grutzmacher, D., Beyer, A., David, C., Ketterer, B., Deckardt, E., Nanotechnology 12, 399 (2001).
21.Schmidt, O.G., Deneke, C., Manz, Y.M., Muller, C., Physica E 13, 969 (2002).
22.Vaccaro, P.O., Kubota, K., Fleischmann, T., Saravanan, S., Aida, T., Microelectron. J. 34, 447 (2003).
23.Bassik, N., Stern, G.M., Gracias, D.H., Appl. Phys. Lett. 95, 091901 (2009).
24.Green, P.W., Syms, R.R.A., Yeatman, E.M., J. Microelectromech. Syst. 4, 170 (1995).
25.Gracias, D.H., Kavthekar, V., Love, J.C., Paul, K.E., Whitesides, G.M., Adv. Mater. 14, 235 (2002).
26.Py, C., Reverdy, P., Doppler, L., Bico, J., Roman, B., Baroud, C.N., Phys. Rev. Lett. 98, 156103 (2007).
27.Guo, X.Y., Li, H., Ahn, B.Y., Duoss, E.B., Hsia, K.J., Lewis, J.A., Nuzzo, R.G., Proc. Natl. Acad. Sci. U.S.A. 106, 20149 (2009).
28.Judy, J.W., Muller, R.S., J. Microelectromech. Syst. 6, 249 (1997).
29.Yi, Y.W., Liu, C., J. Microelectromech. Syst. 8, 10 (1999).
30.Hu, Z.B., Zhang, X.M., Li, Y., Science 269, 525 (1995).
31.Klein, Y., Efrati, E., Sharon, E., Science 315, 1116 (2007).
32.Ionov, L., Soft Matter 7, 6786 (2011).
33.Kim, J., Hanna, J.A., Byun, M., Santangelo, C.D., Hayward, R.C., Science 335, 1201 (2012).
34.Liu, Y., Boyles, J.K., Genzer, J., Dickey, M.D., Soft Matter 8, 1764 (2012).
35.Chen, D.Y., Yoon, J., Chandra, D., Crosby, A.J., Hayward, R.C., J. Polym. Sci. B Polym. Phys. 52, 1441 (2014).
36.Ware, T.H., McConney, M.E., Wie, J.J., Tondiglia, V.P., White, T.J., Science 347, 982 (2015).
37.Pandey, S., Ewing, M., Kunas, A., Nguyen, N., Gracias, D.H., Menon, G., Proc. Natl. Acad. Sci. U.S.A. 108, 19885 (2011).
38.Nagpal, R., Proc. 1st Intl. Joint Conf. on Autonomous Agents and Multiagent Syst. Part 1 (ACM 2002), p. 418.
39.Benbernou, N.M., Demaine, E.D., Demaine, M.L., Ovadya, A., in Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education, Wang-Iverson, P., Lang, R.J., Yim, M., Eds. (A K Peters/CRC Press, Boca Raton, FL, 2011), p. 405.
40.Tolley, M.T., Felton, S.M., Miyashita, S., Aukes, D., Rus, D., Wood, R.J., Smart Mater. Struct. 23 094006 (2014).
41.An, B., Rus, D., Rob. Auton. Syst. 62, 976 (2014).
42.Raviv, D., Zhao, W., McKnelly, C., Papadopoulou, A., Kadambi, A., Shi, B.X., Hirsch, S., Dikovsky, D., Zyracki, M., Olguin, C., Raskar, R., Tibbits, S., Sci. Rep. 4, 7422 (2014).
43.Dahlmann, G.W., Yeatman, E.M., Electron. Lett. 36, 1707 (2000).
44.Syms, R.R.A., J. Microelectromech. Syst. 8, 448 (1999).
45.Cho, J.H., Keung, M.D., Verellen, N., Lagae, L., Moshchalkov, V.V., Van Dorpe, P., Gracias, D.H., Small 7, 1943 (2011).
46.Gracias, D., Cho, J.-H., Hu, S., in Mater. Res. Soc. Symp. Proc. 1249, Bonafos, C., Fujisaki, Y., Dimitrakis, P., Tokumitsu, E., Eds. (Materials Research Society, Warrendale, PA, 2010), p. F09–07.
47.Xu, S., Yan, Z., Jang, K.I., Huang, W., Fu, H.R., Kim, J., Wei, Z., Flavin, M., McCracken, J., Wang, R., Badea, A., Liu, Y., Xiao, D.Q., Zhou, G.Y., Lee, J., Chung, H.U., Cheng, H.Y., Ren, W., Banks, A., Li, X.L., Paik, U., Nuzzo, R.G., Huang, Y.G., Zhang, Y.H., Rogers, J.A., Science 347, 154 (2015).
48.Zhang, Y., Yan, Z., Nan, K., Xiao, D., Liu, Y., Luan, H., Fu, H., Wang, X., Yang, Q., Wang, J., Ren, W., Si, H., Liu, F., Yang, L., Li, H., Wang, J., Guo, X., Luo, H., Wang, L., Huang, Y., Rogers, J.A., Proc. Natl. Acad. Sci. U.S.A. 112, 11757 (2015).
49.Prinz, V. Ya., Seleznev, V.A., Gutakovsky, A.K., Chehovskiy, A.V., Preobrazhenskii, V.V., Putyato, M.A., Gavrilova, T.A., Physica E 6, 828 (2000).
50.Schmidt, O.G., Eberl, K., Nature 410, 168 (2001).
51.Mei, Y.F., Huang, G.S., Solovev, A.A., Urena, E.B., Moench, I., Ding, F., Reindl, T., Fu, R.K.Y., Chu, P.K., Schmidt, O.G., Adv. Mater. 20, 4085 (2008).
52.Mi, Z., Bianucci, P., Curr. Opin. Solid State Mater. Sci. 16, 52 (2012).
53.Huang, W., Koric, S., Yu, X., Hsia, K.J., Li, X.L., Nano Lett. 14, 6293 (2014).
54.Bufon, C.C.B., Gonzalez, J.D.C., Thurmer, D.J., Grimm, D., Bauer, M., Schmidt, O.G., Nano Lett. 10, 2506 (2010).
55.Huang, W., Yu, X., Froeter, P., Xu, R.M., Ferreira, P., Li, X.L., Nano Lett. 12, 6283 (2012).
56.Froeter, P., Yu, X., Huang, W., Du, F., Li, M.Y., Chun, I., Kim, S.H., Hsia, K.J., Rogers, J.A., Li, X.L., Nanotechnology 24, 475301 (2013).
57.Sharma, R., Bufon, C.C.B., Grimm, D., Sommer, R., Wollatz, A., Schadewald, J., Thurmer, D.J., Siles, P.F., Bauer, M., Schmidt, O.G., Adv. Energy Mater. 4, 1301631 (2014).
58.Karnaushenko, D.D., Karnaushenko, D., Makarov, D., Schmidt, O.G., NPG Asia Mater. 7, e188 (2015).
59.Huang, W., Li, M., Gong, S., Li, X., “Self-rolled-up Tube Transformers: Extreme Miniaturization and Performance Enhancement,” presented at the 73rd Annual Device Research Conference (IEEE Electron Devices Society), The Ohio State University, Columbus, OH, June 21–24, 2015, p. 223.
60.Grimm, D., Bufon, C.C.B., Deneke, C., Atkinson, P., Thurmer, D.J., Schaffel, F., Gorantla, S., Bachmatiuk, A., Schmidt, O.G., Nano Lett. 13, 213 (2013).
61.Bianucci, P., Mukherjee, S., Dastjerdi, M.H.T., Poole, P.J., Mi, Z., Appl. Phys. Lett. 101, 031104 (2012).
62.Dastjerdi, M.H.T., Djavid, M., Mi, Z., Appl. Phys. Lett. 106, 021114 (2015).
63.Tian, Z.B., Veerasubramanian, V., Bianucci, P., Mukherjee, S., Mi, Z.T., Kirk, A.G., Plant, D.V., Opt. Express 19, 12164 (2011).
64.Böttner, S., Li, S., Jorgensen, M.R., Schmidt, O.G., Appl. Phys. Lett. 102, 251119 (2013).
65.Yu, X., Arbabi, E., Goddard, L.L., Li, X., Chen, X., Appl. Phys. Lett. 107, 031102 (2015).
66.Madani, A., Kleinert, M., Stolarek, D., Zimmermann, L., Ma, L., Schmidt, O.G., Opt. Lett. 40, 3826 (2015).
67.Yan, C.L., Xi, W., Si, W.P., Deng, J.W., Schmidt, O.G., Adv. Mater. 25, 539 (2013).
68.Si, W.P., Monch, I., Yan, C.L., Deng, J.W., Li, S.L., Lin, G.G., Han, L.Y., Mei, Y.F., Schmidt, O.G., Adv. Mater. 26, 7973 (2014).
69.Deng, J.W., Ji, H.X., Yan, C.L., Zhang, J.X., Si, W.P., Baunack, S., Oswald, S., Mei, Y.F., Schmidt, O.G., Angew. Chem. Int. Ed. 52, 2326 (2013).
70.Schmidt, O.G., Deneke, C., Kiravittaya, S., Songmuang, R., Heidemeyer, H., Nakamura, Y., Zapf-Gottwick, R., Muller, C., Jin-Phillipp, N.Y., IEEE J. Sel. Top. Quantum Electron. 8, 1025 (2002).
71.Bernardi, A., Kiravittaya, S., Rastelli, A., Songmuang, R., Thurmer, D., Benyoucef, M., Schmidt, O.G., Appl. Phys. Lett. 93, 094106 (2008).
72.Harazim, S.M., Quiñones, V.A.B., Kiravittaya, S., Sanchez, S., Schmidt, O.G., Lab Chip 12, 2649 (2012).
73.Randhawa, J.S., Gurbani, S.S., Keung, M.D., Demers, D.P., Leahy-Hoppa, M.R., Gracias, D.H., Appl. Phys. Lett. 96, 191108 (2010).
74.Mahadevan, L., Rica, S., Science 307, 1740 (2005).
75.Silverberg, J.L., Evans, A.A., McLeod, L., Hayward, R.C., Hull, T., Santangelo, C.D., Cohen, I., Science 345, 647 (2014).
76.Yasuda, H., Yang, J., Phys. Rev. Lett. 114, 185502 (2015).
77.Silverberg, J.L., Na, J.H., Evans, A.A., Liu, B., Hull, T.C., Santangelo, C.D., Lang, R.J., Hayward, R.C., Cohen, I., Nat. Mater. 14, 540 (2015).
78.Schulze, S., Huang, G.S., Krause, M., Aubyn, D., Quinones, V.A.B., Schmidt, C.K., Mei, Y.F., Schmidt, O.G., Adv. Eng. Mater. 12, B558 (2010).
79.Froeter, P., Huang, Y., Cangellaris, O.V., Huang, W., Dent, E.W., Gillette, M.U., Williams, J.C., Li, X. L., ACS Nano 8, 11108 (2014).
80.Koch, B., Meyer, A.K., Helbig, L., Harazim, S., Storch, A., Sanchez, S., Schmidt, O.G., Nano Lett. 15, 5530 (2015).
81.Smith, E.J., Xi, W., Makarov, D., Mönch, I., Harazim, S., Quiñones, V.A.B., Schmidt, C.K., Mei, Y., Sanchez, S., Schmidt, O.G., Lab Chip 12, 1917 (2012).
82.Randall, C.L., Gultepe, E., Gracias, D.H., Trends Biotech. 30, 138 (2012).
83.Smith, E.J., Schulze, S., Kiravittaya, S., Mei, Y.F., Sanchez, S., Schmidt, O.G., Nano Lett. 11, 4037 (2011).
84.Fernandes, R., Gracias, D.H., Adv. Drug Deliv. Rev. 64, 1579 (2012).
85.Stroganov, V., Zakharchenko, S., Sperling, E., Meyer, A.K., Schmidt, O.G., Ionov, L., Adv. Funct. Mater. 24, 4357 (2014).
86.Xi, W., Schmidt, C.K., Sanchez, S., Gracias, D.H., Carazo-Salas, R.E., Jackson, S.P., Schmidt, O.G., Nano Lett. 14, 4197 (2014).
87.Arayanarakool, R., Meyer, A.K., Helbig, L., Sanchez, S., Schmidt, O.G., Lab Chip 15, 2981 (2015).
88.Suzuki, K., Shimoyama, I., Miura, H., Ezura, Y., “Creation of an Insect-based Microrobot with an External Skeleton and Elastic Joints,” Proc. IEEE Microelectromech. Syst. (MEMS ‘92), (1992), p. 190.
89.Sreetharan, P.S., Whitney, J.P., Strauss, M.D., Wood, R.J., J. Micromech. Microeng. 22 055027 (2012).
90.Paik, J., An, B., Rus, D., Wood, R.J., Proc. 2nd Int. Conf. on Morphological Computation (ICMC 2011), (2012), p. 12.
91.Gultepe, E., Yamanaka, S., Laflin, K.E., Kadam, S., Shim, Y., Olaru, A.V., Limketkai, B., Khashab, M.A., Kalloo, A.N., Gracias, D.H., Selaru, F.M., Gastroenterology 144, 691 (2013).
92.Malachowski, K., Breger, J., Kwag, H.R., Wang, M.O., Fisher, J.P., Selaru, F.M., Gracias, D.H., Angew. Chem. Int. Ed. 53, 8045 (2014).
93.Malachowski, K., Jamal, M., Jin, Q.R., Polat, B., Morris, C.J., Gracias, D.H., Nano Lett. 14, 4164 (2014).
94.Magdanz, V., Guix, M., Schmidt, O.G., Robotics Biomim. 1, 1 (2014).
95.Jamal, M., Zarafshar, A.M., Gracias, D.H., Nat. Commun. 2, 527 (2011).
96.Felton, S., Tolley, M., Demaine, E., Rus, D., Wood, R., Science 345, 644 (2014).
97.Solovev, A.A., Xi, W., Gracias, D.H., Harazim, S.M., Deneke, C., Sanchez, S., Schmidt, O.G., ACS Nano 6, 1751 (2012).


Origami MEMS and NEMS

  • John Rogers (a1), Yonggang Huang (a2), Oliver G. Schmidt (a3) and David H. Gracias (a4)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed