Skip to main content
    • Aa
    • Aa

Overview of Phase-Change Chalcogenide Nonvolatile Memory Technology


Phase-change nonvolatile semiconductor memory technology is based on an electrically initiated, reversible rapid amorphous-to-crystalline phase-change process in multicomponent chalcogenide alloy materials similar to those used in rewriteable optical disks. Long cycle life, low programming energy, and excellent scaling characteristics are advantages that make phase-change semiconductor memory a promising candidate to replace flash memory in future applications. Phase-change technology is being commercialized by a number of semiconductor manufacturers. Fundamental processes in phase-change semiconductor memory devices, device performance characteristics, and progress toward commercialization of the technology are reviewed.

Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1 S.R. Ovshinsky Phys. Rev. Lett. 21 (1968) p. 1450.

2 J. Feinleib J. de Neufville , S.C. Moss and S.R. Ovshinsky Appl. Phys. Lett. 18 (1971) p. 254.

3 H. Fritzsche Annu. Rev. Mater. Sci. 2 (1972) p. 697.

4 D. Adler Scientific American 236 (36) (1977).

5 M. Takenaga N. Yamada S. Ohara K. Nishiuchi M. Nagashima T. Kashihara S. Nakamura and T. Yashimata in Proc. SPIE 420 (SPIE—The International Society for Optical Engineering, Bellingham, WA, 1983) p. 173.

7 M. Chen K. Rubin and R. Barton Appl. Phys. Lett. 49 (1986) p. 502.

9 N. Akahira N. Yamada K. Kimura and M. Takao in Proc. SPIE 899 (SPIE—The International Society for Optical Engineering, Bellingham, WA, 1988) p. 188.

15 G. Wicker in Proc. SPIE Conf. Electronics and Structures for MEMS, Vol. 3891 (SPIE—The International International Society for Optical Engineering, Bellingham, WA, 1999) p. 2.

17 J.H. Coombs A.P.J. Jongenelis W. van Es-Spiekman , and B.A.J. Jacobs J. Appl. Phys. 78 (1995) p. 4906 and p. 4918.

20 M.H. Cohen H. Fritzsche and S.R. Ovshinsky Phys. Rev. Lett. 22 (1969) p. 1065.

21 M. Kastner D. Adler and H. Fritzsche Phys. Rev. Lett. 37 (1976) p. 1504.

22 A. Pirovano A. Lacaita A. Benvenuti F. Pellizzer and R. Bez IEEE Trans. Electron. Dev. 51 (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 2004) p. 452.

23 D.K. Reinhard F.O. Arntz and D. Adler Appl. Phys. Lett. 23 (1973) p. 521.

25 D. Adler M.S. Shur M. Silver and S.R. Ovshinsky J. Appl. Phys. 51 (1980) p. 3289.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 133 *
Loading metrics...

Abstract views

Total abstract views: 338 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd May 2017. This data will be updated every 24 hours.