Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-23T16:26:10.055Z Has data issue: false hasContentIssue false

Phase transition dynamics in one-dimensional halide perovskite crystals

Published online by Cambridge University Press:  11 November 2020

Minliang Lai
Affiliation:
Department of Chemistry, University of California, Berkeley, California, USA
Teng Lei
Affiliation:
Department of Chemistry, University of California, Berkeley, California, USA
Ye Zhang
Affiliation:
Department of Chemistry, University of California, Berkeley, California, USA
Jianbo Jin
Affiliation:
Department of Chemistry, University of California, Berkeley, California, USA
Julian A. Steele
Affiliation:
Department of Chemistry, University of California, Berkeley, California, USA cMACS, Department of Microbial and Molecular Systems, KU Leuven, Belgium
Peidong Yang*
Affiliation:
Department of Chemistry, University of California, Berkeley, California, USA Department of Materials Science and Engineering, University of California, Berkeley, USA; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Kavli Energy NanoScience Institute, Berkeley, California, USA
*
*Corresponding author: p_yang@berkeley.edu
Get access

Abstract

Triiodide perovskites CsPbI3, CsSnI3, and FAPbI3 (where FA is formamidinium) are highly promising materials for a range of optoelectronic applications in energy conversion. However, they are thermodynamically unstable at room temperature, preferring to form low-temperature (low-T) non-perovskite phases with one-dimensional anisotropic crystal structures. While such thermodynamic behavior represents a major obstacle toward realizing high-performance devices based on their high-temperature (high-T) perovskite phases, the underlying phase transition dynamics are still not well understood. Here we use in situ optical micro-spectroscopy to quantitatively study the transition from the low-T to high-T phases in individual CsSnI3 and FAPbI3 nanowires. We reveal a large blueshift in the photoluminescence (PL) peak (~38 meV) at the low-T/high-T two-phase interface of partially transitioned FAPbI3 wire, which may result from the lattice distortion at the phase boundary. Compared to the experimentally derived activation energy of CsSnI3 (~1.93 eV), the activation energy of FAPbI3 is relatively small (~0.84 eV), indicating a lower kinetic energy barrier when transitioning from a face-sharing octahedral configuration to a corner-sharing one. Further, the phase propagation rate in CsSnI3 is observed to be relatively high, which may be attributed to a high concentration of Sn vacancies. Our results could not only facilitate a deeper understanding of phase transition dynamics in halide perovskites with anisotropic crystal structures, but also enable controllable manipulation of optoelectronic properties via local phase engineering.

Type
Article
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Metal halide perovskites are a new class of semiconductors with great promise for a variety of optoelectronic applications. Owing to their soft ionic lattice, halide perovskites often exhibit rich phase transitions between different crystal structures, frequently from the “active” perovskite phases to undesirable “inactive” non-perovskite phases. Understanding and controlling this transition is vital for developing stable, high-performance devices. However, there is limited understanding on how different symmetry, crystal structure, and defect would impact such a phase transition process. In this report, in situ optical micro-spectroscopy is used to systematically investigate the phase transitions from non-perovskite to perovskite phases in individual CsSnI3 and FAPbI3 wires. Compared to the transition from an edge-sharing octahedral non-perovskite structure to a corner-sharing perovskite structure in CsSnI3, the activation energy for the FAPbI3 phase transition is relatively small, indicating a lower energy barrier when starting from a face-sharing octahedral structure in FAPbI3. The high concentration of Sn vacancies is probably responsible for the much higher phase propagation rate in CsSnI3 when compared to a CsPbBrxI3–x system with the same crystal structure but different halide vacancies. Our experimental results expand the knowledge of phase transition in halide perovskites and offer important guidance toward rationally designing more stable and efficient perovskite devices.

References

Li, Y., Duerloo, K.A.N., Wauson, K., Reed, E.J., Structural semiconductor-to-semimetal phase transition in two-dimensional materials induced by electrostatic gating. Nat. Commun. 7, 1 (2016).Google ScholarPubMed
Wuttig, M., Yamada, N., Phase-change materials for rewriteable data storage. Nat. Mater. 6(11), 824 (2007).CrossRefGoogle ScholarPubMed
Kübler, C., Ehrke, H., Huber, R., Lopez, R., Halabica, A., Haglund, R.F., Leitenstorfer, A., Coherent structural dynamics and electronic correlations during an ultrafast insulator-to-metal phase transition in VO2. Phys. Rev. Lett. 99(11), 116401 (2007).CrossRefGoogle ScholarPubMed
Wang, Q., Rogers, E.T.F., Gholipour, B., Wang, C.M., Yuan, G., Teng, J., Zheludev, N.I., Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photonics 10(1), 60 (2016).CrossRefGoogle Scholar
Wuttig, M., Bhaskaran, H., Taubner, T., Phase-change materials for non-volatile photonic applications. Nat. Photonics 11(8), 465 (2017).CrossRefGoogle Scholar
Cho, H., Jeong, S.-H., Park, M.-H., Kim, Y.-H., Wolf, C., Lee, C.-L., Heo, J. H., Sadhanala, A., Myoung, N., Yoo, S., Im, S.H., Friend, R.H., Lee, T.-W., Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350(6265), 1222 (2015).CrossRefGoogle ScholarPubMed
Burschka, J., Pellet, N., Moon, S.-J., Humphry-Baker, R., Gao, P., Nazeeruddin, M.K., Grätzel, M., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458), 316 (2013).CrossRefGoogle ScholarPubMed
Sanchez, R.S., De La Fuente, M.S., Suarez, I., Muñoz-Matutano, G., Martinez-Pastor, J.P., Mora-Sero, I., Tunable light emission by exciplex state formation between hybrid halide perovskite and core/shell quantum dots: Implications in advanced LEDs and photovoltaics. Sci. Adv. 2(1), e1501104 (2016).CrossRefGoogle ScholarPubMed
Im, J.-H., Jang, I.-H., Pellet, N., Grätzel, M., Park, N.-G., Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat. Nanotechnol. 9(11), 927 (2014).CrossRefGoogle ScholarPubMed
Eperon, G.E., Paternò, G.M., Sutton, R.J., Zampetti, A., Haghighirad, A.A., Cacialli, F., Snaith, H.J., Inorganic caesium lead iodide perovskite solar cells. J. Mater. Chem. A 3(39), 19688 (2015).CrossRefGoogle Scholar
Stoumpos, C.C., Kanatzidis, M.G., The renaissance of halide perovskites and their evolution as emerging semiconductors. Acc. Chem. Res. 48(10), 2791 (2015).CrossRefGoogle ScholarPubMed
da Silva, E.L., Skelton, J.M., Parker, S.C., Walsh, A., Phase stability and transformations in the halide perovskite CsSnI3. Phys. Rev. B 91(14), 144107 (2015).CrossRefGoogle Scholar
Eames, C., Frost, J.M., Barnes, P.R.F., O'Regan, B.C., Walsh, A., Islam, M.S., Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 6, 7497 (2015).CrossRefGoogle ScholarPubMed
Swarnkar, A., Marshall, A.R., Sanehira, E.M., Chernomordik, B.D., Moore, D.T., Christians, J.A., Chakrabarti, T., Luther, J.M., Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354(6308), 92 (2016).CrossRefGoogle ScholarPubMed
Kontos, A.G., Kaltzoglou, A., Siranidi, E., Palles, D., Angeli, G.K., Arfanis, M.K., Psycharis, V., Raptis, Y.S., Kamitsos, E.I., Trikalitis, P.N., Stoumpos, C.C., Kanatzidis, M.G., Falaras, P., Structural stability, vibrational properties, and photoluminescence in CsSnI3 perovskite upon the addition of SnF2. Inorg. Chem. 56(1), 84 (2017).CrossRefGoogle ScholarPubMed
Marshall, K.P., Walker, M., Walton, R.I., Hatton, R.A., Enhanced stability and efficiency in hole-transport-layer-free CsSnI 3 perovskite photovoltaics. Nat. Energy 1(12), 1 (2016).Google Scholar
Gu, L., Zhang, D., Kam, M., Zhang, Q., Poddar, S., Fu, Y., Mo, X., Fan, Z., Significantly improved black phase stability of FAPbI3 nanowires via spatially confined vapor phase growth in nanoporous templates. Nanoscale 10(32), 15164 (2018).CrossRefGoogle ScholarPubMed
Chen, Y., Lei, Y., Li, Y., Yu, Y., Cai, J., Chiu, M.H., Rao, R., Gu, Y., Wang, C., Choi, W., Hu, H., Wang, C., Li, Y., Song, J., Zhang, J., Qi, B., Lin, M., Zhang, Z., Islam, A.E., Maruyama, B., Dayeh, S., Li, L.J., Yang, K., Lo, Y.H., Xu, S., Strain engineering and epitaxial stabilization of halide perovskites. Nature 577(7789), 209 (2020).CrossRefGoogle ScholarPubMed
Bischak, C.G., Lai, M., Lu, D., Fan, Z., David, P., Dong, D., Chen, H., Etman, A.S., Lei, T., Sun, J., Grünwald, M., Limmer, D.T., Yang, P., Ginsberg, N.S., Liquid-like interfaces mediate structural phase transitions in lead halide perovskites. Matter 3(2), 534 (2020).CrossRefGoogle Scholar
Lai, M., Kong, Q., Bischak, C.G., Yu, Y., Dou, L., Eaton, S.W., Ginsberg, N.S., Yang, P., Structural, optical, and electrical properties of phase-controlled cesium lead iodide nanowires. Nano Res. 10(4), 1107 (2017).CrossRefGoogle Scholar
Kong, Q., Lee, W., Lai, M., Bischak, C.G., Gao, G., Wong, A.B., Lei, T., Yu, Y., Wang, L.-W., Ginsberg, N.S., Yang, P., Phase-transition–induced p-n junction in single halide perovskite nanowire. Proc. Natl. Acad. Sci. USA 115(36), 8889 (2018).CrossRefGoogle ScholarPubMed
Steele, J.A., Yuan, H., Tan, C.Y.X., Keshavarz, M., Steuwe, C., Roeffaers, M.B.J., Hofkens, J., Direct laser writing of δ- to α-phase transformation in formamidinium lead iodide. ACS Nano 11(8), 8072 (2017).CrossRefGoogle ScholarPubMed
Han, Q., Bae, S.H., Sun, P., Hsieh, Y.T., Yang, Y., Rim, Y.S., Zhao, H., Chen, Q., Shi, W., Li, G., Yeng, Y., Single crystal formamidinium lead iodide (FAPbI3), Insight into the structural, optical, and electrical properties. Adv. Mater. 28(11), 2253 (2016).CrossRefGoogle Scholar
Ma, F., Li, J., Li, W., Lin, N., Wang, L., Qiao, J., Stable α/δ phase junction of formamidinium lead iodide perovskites for enhanced near-infrared emission. Chem. Sci. 8(1), 800 (2016).CrossRefGoogle ScholarPubMed
Bischak, C.G., Wong, A.B., Lin, E., Limmer, D.T., Yang, P., Ginsberg, N.S., Tunable polaron distortions control the extent of halide demixing in lead halide perovskites. J. Phys. Chem. Lett. 9(14), 3998 (2018).CrossRefGoogle ScholarPubMed
Ferreira, A.C., Létoublon, A., Paofai, S., Raymond, S., Ecolivet, C., Rufflé, B., Cordier, S., Katan, C., Saidaminov, M.I., Zhumekenov, A.A., Elastic softness of hybrid lead halide perovskites. Phys. Rev. Lett. 121(8), 85502 (2018).CrossRefGoogle ScholarPubMed
Dobrovolsky, A., Merdasa, A., Unger, E.L., Yartsev, A., Scheblykin, I.G., Defect-induced local variation of crystal phase transition temperature in metal-halide perovskites. Nat. Commun. 8(1), 1 (2017).CrossRefGoogle ScholarPubMed
Chen, T., Foley, B.J., Park, C., Brown, C.M., Harriger, L.W., Lee, J., Ruff, J., Yoon, M., Choi, J.J., Lee, S.H., Entropy-driven structural transition and kinetic trapping in formamidinium lead iodide perovskite. Sci. Adv. 2(10), 1 (2016).CrossRefGoogle ScholarPubMed
Yamada, K., Funabiki, S., Horimoto, H., Matsui, T., Okuda, T., Ichiba, S., Structural phase transitions of the polymorphs of CsSnI3 by means of rietveld analysis of the x-ray diffraction. Chem. Lett. 20(5), 801 (1991).CrossRefGoogle Scholar
Chung, I., Song, J.-H., Im, J., Androulakis, J., Malliakas, C.D., Li, H., Freeman, A.J., Kenney, J.T., Kanatzidis, M.G., CsSnI3: semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions. J. Am. Chem. Soc. 134(20), 8579 (2012).CrossRefGoogle ScholarPubMed
Whitfield, P.S., Herron, N., Guise, W.E., Page, K., Cheng, Y.Q., Milas, I., Crawford, M.K., Structures, phase transitions and tricritical behavior of the hybrid perovskite methyl ammonium lead iodide. Sci. Rep. 6, 1 (2016).CrossRefGoogle ScholarPubMed
Steele, J.A., Lai, M., Zhang, Y., Lin, Z., Hofkens, J., Roeffaers, M.B.J., Yang, P., Phase transitions and anion exchange in all-inorganic halide perovskites. Acc. Mater. Res. (2020), doi.org/10.1021/accountsmr.0c00009.CrossRefGoogle Scholar
Lin, J., Lai, M., Dou, L., Kley, C.S., Chen, H., Peng, F., Sun, J., Lu, D., Hawks, S. A., Xie, C., Cui, F., Alivisatos, A.P., Limmer, D.T., Yang, P., Thermochromic halide perovskite solar cells. Nat. Mater. 17(3), 261 (2018).CrossRefGoogle ScholarPubMed
Tsuchiya, T., Tsuchiya, J., Umemoto, K., Wentzcovitch, R.M., Phase transition in MgSiO3 perovskite in the earth's lower mantle. Earth Planet. Sci. Lett. 224(3–4), 241 (2004).CrossRefGoogle Scholar
Oganov, A.R., Martoňák, R., Laio, A., Raiteri, P., Parrinello, M., Anisotropy of earth's D″ layer and stacking faults in the MgSiO 3 post-perovskite phase. Nature 438(7071), 1142 (2005).CrossRefGoogle Scholar
Supplementary material: File

Lai et al. supplementary material

Lai et al. supplementary material

Download Lai et al. supplementary material(File)
File 1.9 MB