Skip to main content Accessibility help

Polymer and composite electrolytes

  • Daniel T. Hallinan (a1), Irune Villaluenga (a2) and Nitash P. Balsara (a3)


Solid inorganic and polymeric electrolytes have the potential to enable rechargeable batteries with higher energy densities, compared to current lithium-ion technology, which uses liquid electrolyte. Inorganic materials such as ceramics and glasses conduct lithium ions well, but they are brittle, which makes incorporation into a battery difficult. Polymers have the flexibility for facile use in a battery, but their transport properties tend to be inferior to inorganics. Thus, there is growing interest in composite electrolytes with inorganic and organic phases in intimate contact. This article begins with a discussion of ion transport in single-phase electrolytes. A dimensionless number (the Newman number) is presented for quantifying the efficacy of electrolytes. An effective medium framework for predicting transport properties of composite electrolytes containing only one conducting phase is then presented. The opportunities and challenges presented by composite electrolytes containing two conducting phases are addressed. Finally, the importance and status of reaction kinetics at the interfaces between solid electrolytes and electrodes are covered, using a lithium-metal electrode as an example.



Hide All
1.Mizushima, K., Jones, P.C.. Weisman, P.J., Goodenough, J.B., Mater. Res. Bull. 15, 783 (1980).
2.Harris, W.S., “Electrochemical Studies in Cyclic Esters,” PhD thesis, University of California, Berkeley (1958).
3.Fong, R., Von Sacken, U., Dahn, J.R., J. Electrochem. Soc. 137, 2009 (1990).
4.Fenton, D.E., Parker, J.M., Wright, P.V., Polymer 14, 589 (1973).
5.Armand, M.B., Annu. Rev. Mater. Sci. 16, 245 (1986). Gennes, P.G., Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, NY, 1979).
7.Flory, P.J., Principles of Polymer Chemistry (Cornell University Press, Ithaca, NY, 1953).
8.Mercier, R., Malugani, J.P., Fahys, B., Robert, G., Solid State Ionics 5, 663 (1981).
9.Wada, H., Menetrier, M., Levasseur, A., Hagenmuller, P., Mater. Res. Bull. 18, 189 (1983).
10.Kamaya, N., Homma, K., Yamakawa, Y., Hirayama, M., Kanno, R., Yonemura, M., Kamiyama, T., Kato, Y., Hama, S., Kawamoto, K., Mitsui, A., Nat. Mater. 10, 682 (2011).
11.Liu, Z., Fu, W., Payzant, E.A., Yu, X., Wu, Z., Dudney, N.J., Kiggans, J., Hong, K., Rondinone, A.J., Liang, C., J. Am. Chem. Soc. 135, 975 (2013).
12.Zhang, Z., Kennedy, J.H., Solid State Ionics 38, 217 (1990).
13.Monroe, C., Newman, J., J. Electrochem. Soc. 152, A396 (2005).
14.Newman, J.S., Thomas-Alyea, K.E., Electrochemical Systems, 3rd ed. (Prentice-Hall, Englewood Cliffs, NJ, 2004).
15.Ma, Y.P., Doyle, M., Fuller, T.F., Doeff, M.M., De Jonghe, L.C., Newman, J., J. Electrochem. Soc. 142, 1859 (1995).
16.Pesko, D.M., Timachova, K., Bhattacharya, R., Smith, M.C., Villaluenga, I., Newman, J., Balsara, N.P., J. Electrochem. Soc. 164, E3569 (2017).
17.Shi, J., Vincent, C.A., Solid State Ionics 60, 11 (1993).
18.Teran, A.A., Tang, M.H., Mullin, S.A., Balsara, N.P., Solid State Ionics 203, 18 (2011).
19.Bruce, P.G., Vincent, C.A., J. Electroanal. Chem. 225, 1 (1987).
20.Watanabe, M., Rikukawa, M., Sanui, K., Ogata, N., J. Appl. Phys. 58, 736 (1985).
21.Doyle, M., Newman, J., J. Electrochem. Soc. 142, 3465 (1995).
22.Balsara, N.P., Newman, J., J. Electrochem. Soc. 162, A2720 (2015).
23.Villaluenga, I., Wujcik, K.H., Tong, W., Devaux, D., Wong, D.H.C., DeSimone, J.M., Balsara, N.P., Proc. Natl. Acad. Sci. U.S.A. 113, 52 (2016).
24.Sun, X.G., Reeder, C.L., Kerr, J.B., Macromolecules 37, 2219 (2004).
25.Bouchet, R., Maria, S., Meziane, R., Aboulaich, A., Lienafa, L., Bonnet, J.P., Phan, T.N.T., Bertin, D., Gigmes, D., Devaux, D., Denoyel, R., Armand, M., Nat. Mater. 12, 452 (2013).
26.Doyle, M., Fuller, T.F., Newman, J., Electrochim. Acta 39, 2073 (1994).
27.Hallinan, D.T., Balsara, N.P., Annu. Rev. Mater. Res. 43, 503 (2013).
28.Pesko, D.M., Jung, Y., Hasan, A.L., Webb, M.A., Coates, G.W., Miller, T.F., Balsara, N.P., Solid State Ionics 289 118 (2016).
29.Lascaud, S., Perrier, M., Vallee, A., Besner, S., Prudhomme, J., Armand, M., Macromolecules 27, 7469 (1994).
30.Oparaji, O., Narayanan, S., Sandy, A., Ramakrishnan, S., Hallinan, D., Macromolecules 51, 2591 (2018).
31.Sax, J., Ottino, J.M., Polym. Eng. Sci. 23, 165 (1983).
32.Villaluenga, I., Chen, X.C., Devaux, D., Hallinan, D.T., Balsara, N.P., Macromolecules 48, 358 (2015).
33.Shen, K.-H., Brown, J.R., Hall, L.M., ACS Macro Lett . 7, 1092 (2018).
34.Desmet, G., Deridder, S., J. Chromatogr. A 1218, 32 (2011).
35.Maxwell, J.C., Treatise on Electricity and Magnetism, 3rd ed. (Academic Reprints, Stanford, CA, 1953), vol. 1.
36.Torquato, S., Random Heterogeneous Materials: Microstructure and Macroscopic Properties (Springer, New York, 2013).
37.Matsen, M.W., Bates, F.S., Macromolecules 29, 1091 (1996).
38.Cochran, E.W., Garcia-Cervera, C.J., Fredrickson, G.H., Macromolecules 39, 2449 (2006).
39.Villaluenga, I., Pesko, D.M., Timachova, K., Feng, Z., Newman, J., Srinivasan, V., Balsara, N.P., J. Electrochem. Soc. 165, A2766 (2018).
40.Croce, F., Appetecchi, G.B., Persi, L., Scrosati, B., Nature 394, 456 (1998).
41.Golodnitsky, D., Ardel, G., Peled, E., Solid State Ionics 147, 141 (2002).
42.Gurevitch, I., Buonsanti, R., Teran, A.A., Gludovatz, B., Ritchie, R.O., Cabana, J., Balsara, N.P., J. Electrochem. Soc. 160, A1611 (2013).
43.Gast, A.P., Leibler, L., Macromolecules 19, 686 (1986).
44.Bruggeman, D.A.G., Ann. Phys. 416, 636 (1935).
45.Thorat, I.V., Stephenson, D.E., Zacharias, N.A., Zaghib, K., Harb, J.N., Wheeler, D.R., J. Power Sources 188, 592 (2009).
46.Seino, Y., Ota, T., Takada, K., Hayashi, A., Tatsumisago, M., Energy Environ. Sci. 7, 627 (2014).
47.Kato, Y., Hori, S., Saito, T., Suzuki, K., Hirayama, M., Mitsui, A., Yonemura, M., Iba, H., Kanno, R., Nat. Energy 1, 16030 (2016).
48.Keller, M., Appetecchi, G.B., Kim, G.-T., Sharova, V., Schneider, M., Schuhmacher, J., Roters, A., Passerini, S., J. Power Sources 353, 287 (2017).
49.Skaarup, S., West, K., Julian, P.M., Thomas, D.M., Solid State Ionics 40–1, 1021 (1990).
50.MacFarlane, D.R., Newman, P.J., Nairn, K.M., Forsyth, M., Electrochim. Acta 43, 1333 (1998).
51.Zheng, J., Hu, Y.-Y., ACS Appl. Mater. Interfaces 10, 4113 (2018).
52.Mehrotra, A., Ross, P.N., Srinivasan, V., J. Electrochem. Soc. 161, A1681 (2014).
53.Schleutker, M., Bahner, J., Tsai, C.L., Stolten, D., Korte, C., Phys. Chem. Chem. Phys. 19, 26596 (2017).
54.Bard, A.J., Faulkner, L.R., Electrochemical Methods, Fundamentals and Applications (Wiley, New York, 2001).
55.Driscoll, P.F., Yang, L., Gervais, M., Kerr, J.B., ECS Trans . 33, 33 (2011).
56.Scrosati, B., Croce, F., Panero, S., J. Power Sources 100, 93 (2001).
57.Hallinan, D.T. Jr., Rausch, A., McGill, B., Chem. Eng. Sci. 154, 34 (2016).
58.Sequeira, C.A.C., Hooper, A., Solid State Ionics 9–10, 1131 (1983).
59.Swiderska-Mocek, A., Lewandowski, A., J. Solid State Electrochem. 21, 1365 (2017).
60.Wu, S.-L., Javier, A.E., Devaux, D., Balsara, N.P., Srinivasan, V., J. Electrochem. Soc. 161, A1836 (2014).
61.Jasinski, R., in Advances in Electrochemistry and Electrochemical Engineering, Delahey, P., Tobias, C.W., Eds. (Interscience, New York, 1971), vol. 8, pp. 253335.
62.Hedges, W.M., Pletcher, D., J. Chem. Soc. Faraday Trans. 1 82, 179 (1986).
63Chiku, M., Tsujiwaki, W., Higuchi, E., Inoue, H., J. Power Sources 244, 675 (2013).


Related content

Powered by UNSILO

Polymer and composite electrolytes

  • Daniel T. Hallinan (a1), Irune Villaluenga (a2) and Nitash P. Balsara (a3)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.