Skip to main content Accessibility help
×
Home

Probing Diffusion Kinetics with Secondary Ion Mass Spectrometry

  • Roger A. De Souza and Manfred Martin

Abstract

Secondary ion mass spectrometry (SIMS) is a powerful analytical technique for determining elemental and isotopic distributions in solids. One of its main attractions to researchers in the field of solid-state ionics is its ability to distinguish between isotopes of the same chemical element as a function of position in a solid. With enriched stable isotopes as diffusion sources, this allows self-diffusion kinetics in solids to be studied. In this article, taking oxygen isotope diffusion in oxides as our main example, we present the standard experimental method, and, subsequently, we discuss several promising developments, in particular the opportunities offered by thin-film geometries, and the investigation of inhomogeneous systems, including possible fast diffusion along grain boundaries and making space-charge layers at interfaces “visible.” These examples demonstrate that SIMS is capable of probing mass transport processes over various length scales, ranging from some nanometers to hundreds of micrometers.

Copyright

References

Hide All
1Benninghoven, A., Rüdenauer, F.G., Werner, H.W., Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications, and Trends (Wiley, New York, 1987).
2Vickerman, J.C., Brown, A., Reed, N.M., Eds., Secondary Ion Mass Spectrometry: Principles and Applications (Clarendon Press, Oxford, 1989).
3von Hevesy, G., Z. Electrochem. 26, 263 (1920).
4Gróh, J., von Hevesy, G., Ann. Phys. 368, 85 (1920).
5Gróh, J., von Hevesy, G., Ann. Phys. 370, 216 (1921).
6Freer, R., Dennis, P.F., Mineral. Mag. 45, 179 (1982).
7Cox, B., Pemsler, J.P., J. Nucl. Mater. 28, 73 (1968).
8Contamin, P., Slodzian, G., Compt. Rend. Sci. Paris Ser. C 267, 805 (1968).
9Contamin, P., Slodzian, G., Appl. Phys. Lett. 13, 416 (1968).
10Arita, M., Hosoya, M., Kobayashi, M., Someno, M., J. Am. Ceram. Soc. 62, 443 (1979).
11Reed, D.J., Wuensch, B.J., J. Am. Ceram. Soc. 63, 88 (1980).
12Yamaguchi, S., Someno, M., Trans. Japan. Inst. Met. 23, 259 (1982).
13Dubois, C., Monty, C., Philibert, J., Philos. Mag. A 46, 419 (1982).
14Kilner, J.A., Steele, B.C.H., Ilkov, L., Solid State Ionics 12, 89 (1984).
15Routbort, J.L., Rothman, S.J., J. Phys. Chem. Solids 47, 993 (1986).
16Bouwmeester, H.J.M., Kruidhof, H., Burggraaf, A.J., Solid State Ionics 72, 185 (1994).
17Adler, S.B., Chem. Rev. 104, 4791 (2004).
18Kilner, J.A., De Souza, R.A., Fullarton, I.C., Solid State Ionics 86–88, 703 (1996).
19De Souza, R.A., Phys. Chem. Chem. Phys. 8, 890 (2006).
20Kilner, J.A., De Souza, R.A., in Proc. 17th Intnl. Risø Symp. On Mater. Sci., Poulsen, F.W., Bonanos, N., Linderoth, S., Mogensen, M., Zachau-Christiansen, B., Risø National Laboratory, Roskilde, Denmark (1996), p. 41.
21Fielitz, P., Borchardt, G., Solid State Ionics 144, 71 (2001).
22De Souza, R.A., Chater, R.J., Solid State Ionics 176, 1915 (2005).
23De Souza, R.A., Kilner, J.A., Solid State Ionics 106, 175 (1998).
24Burriel, M., Garcia, G., Santiso, J., Kilner, J.A., Chater, R.J., Skinner, S.J., J. Mater. Chem. 18, 416 (2008).
25Claus, J., Borchardt, G., Weber, S., Hiver, J.-M., Scherrer, S., Mater. Sci. Eng. B 38, 251 (1996).
26Wang, L., Merkle, R., Maier, J., Acartürk, T., Starke, U., Appl. Phys. Lett. 94, 071908 (2009).
27Sase, M., Yashiro, K., Sato, K., Mizusaki, J., Kawada, T., Sakai, N., Yamaji, K., Horita, T., Yokokawa, H., Solid State Ionics 178, 1843 (2008).
28Sase, M., Hermes, F., Yashiro, K., Sato, K., Mizusaki, J., Kawada, T., Sakai, N., Yokokawa, H., J. Electrochem. Soc. 155, B793 (2008).
29Korte, C., Peters, A., Janek, J., Hesse, D., Zakharov, N., Phys. Chem. Chem. Phys. 10, 4623 (2008).
30Horita, T., Yamaji, K., Ishikawa, M., Sakai, N., Yokokawa, H., Kawada, T., J. Electrochem. Soc. 145, 3196 (1998).
31Horita, T., Yamaji, K., Sakai, N., Yokokawa, H., Kawada, T., Kato, T., Solid State Ionics 127, 55 (2000).
32Fleig, J., Phys. Chem. Chem. Phys. 11, 3144 (2009).
33Wilson, J.R., Kobsiriphat, W., Mendoza, R., Chen, H.-Y., Hiller, J.M., Miller, D.J., Thornton, K., Voorhees, P.W., Adler, S.B., Barnett, S.A., Nat. Mater. 5, 541 (2006).
34Harrison, L.G., Trans. Faraday Soc. 57, 1191 (1961).
35Mondal, P., Hahn, H., Ber. Bunsen Ges. Phys. Chem. 101, 1765 (1997).
36Guo, X., Vasco, E., Mi, S., Szot, K., Wachsman, E., Waser, R., Acta Mater. 53, 5161 (2005).
37Kosacki, I., Rouleau, C.M., Becher, P.F., Bentley, J., Lowndes, D.H., Solid State Ionics 176, 1319 (2005).
38De Souza, R.A., Pietrowski, M.J., Anselmi-Tamburini, U., Kim, S., Munir, Z.A., Martin, M., Phys. Chem. Chem. Phys. 10, 2067 (2008).
39Kim, S., Avila-Paredes, H.J., Wang, S., Chen, C.T., De Souza, R.A., Martin, M., Munir, Z.A., Phys. Chem. Chem. Phys. 11, 3035 (2009).
40Kilo, M., Taylor, M.A., Argirusis, Ch., Borchardt, G., Lesage, B., Weber, S., Scherrer, S., Scherrer, H., Schroeder, M., Martin, M., J. Appl. Phys. 94, 7547 (2003).
41Kilo, M., Defect Diffus. Forum 242–244, 185 (2005).
42Schulz, O., Martin, M., Argirusis, C., Borchardt, G., Phys. Chem. Chem. Phys. 5, 2308 (2003).
43Wærnhus, I., Sakai, N., Yokokawa, H., Grande, T., Einarsrud, M.-A., Wiik, K., Solid State Ionics, 175, 69 (2004).
44Koerfer, S., De Souza, R.A., Yoo, H.I., Martin, M., Solid State Sci. 10, 725 (2008).
45Martin, M., Pure Appl. Chem. 75, 889 (2003).
46Martin, M., Schmalzried, H., Ber. Bunsen Ges. Phys. Chem. 89, 124 (1985).
47Schmalzried, H., Laqua, W., Lin, P.L., Z. Naturforsch. 34a, 192 (1979).
48Martin, M., Solid State Ionics 136–137, 331 (2000).
49Schmalzried, H., Laqua, W., Oxid. Met. 15, 339 (1981).
50De Souza, R.A., Martin, M., Phys. Status Solidi C 4, 1785 (2007).
51Schulz, O., Flege, S., Martin, M., in The Electrochemical Society Proceedings Series: SOFC–VIII, Singhal, S.C., Dokiya, M., Eds. (PV 2003–07, 2003) p. 304.
52Schulz, O., PhD thesis, RWTH Aachen University, Aachen, North Rhine-Westphalia, Germany (2003).
53Fischer, J.C., J. Appl. Phys. 22, 74 (1951).
54De Souza, R.A., Martin, M., Phys. Chem. Chem. Phys. 10, 2356 (2008).
55Nakagawa, T., Sakaguchi, I., Shibata, N., Matsunaga, K., Yamamoto, T., Haneda, H., Ikuhara, Y., J. Mater. Sci. 40, 3185 (2005).
56Gomes, E., Figueiredo, F.M., Marques, F.M.B., Solid State Ionics 179, 900 (2008).
57Litzelman, S.J., De Souza, R.A., Butz, B., Tuller, H.L., Martin, M., Gerthsen, D., J. Electroceram. 22, 263 (2009).
58Wang, R., McIntyre, P.C., J. Appl. Phys. 97, 023508 (2005).
59De Souza, R.A., Zehnpfenning, J., Martin, M., Maier, J., Solid State Ionics 176, 1465 (2005).
60De Souza, R.A., Phys. Chem. Chem. Phys. 11, 9939 (2009).
61Guo, X., Waser, R., Prog. Mater. Sci. 51, 151 (2006).
62Meyer, R., Waser, R., Helmhold, J., Borchardt, G., Phys. Rev. Lett. 90, 105901 (2003).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed