Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-19T01:50:24.259Z Has data issue: false hasContentIssue false

Pure colors from core–shell quantum dots

Published online by Cambridge University Press:  12 September 2013

Ou Chen
Affiliation:
Department of Chemistry, Massachusetts Institute of Technology;chenou@mit.edu
He Wei
Affiliation:
Department of Chemistry, Massachusetts Institute of Technology;hewei@mit.edu
Axel Maurice
Affiliation:
CEA Grenoble, France;axel.maurice@cea.fr
Moungi Bawendi
Affiliation:
Massachusetts Institute of Technology;mgb@mit.edu
Peter Reiss
Affiliation:
CEA Grenoble, France;peter.reiss@cea.fr
Get access

Abstract

Emissive saturated colors are key components of new generations of lighting and display technologies. Quantum dots have evolved in the past two decades to fulfill many of the requirements of color purity, stability, and efficiency that are critical to transitioning these materials from the laboratory into these markets. A fundamental feature of quantum dots is the tunability of their emission color through precise control of their size and composition, giving access to UV, visible, and near-infrared wavelengths. Continuing improvements in engineering core–shell quantum dot structures, where a 1–10 nm binary, ternary, or alloyed semiconductor core particle is surrounded by a shell composed of one or more semiconductors of a wider bandgap, have resulted in materials with fluorescence quantum yields that approach unity, narrow symmetric spectral line shapes, and remarkable stabilities. In this article, we review progress in the development of highly luminescent core–shell quantum dots of different semiconductor families in view of their integration in light-emitting applications. CdSe-based quantum dots already fulfill many of the requirements of lighting and display applications in terms of fluorescence quantum yield, color purity, and stability.

Type
Quantum dot light-emitting devices
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ekimov, A.I., Onushchenko, A.A., JETP Lett. 34, 345 (1981).Google Scholar
Efros, Al. L., Efros, A.L., Sov. Phys. Semicond. 16, 772 (1982).Google Scholar
Brus, L.E., J. Chem. Phys. 79, 5566 (1983).CrossRefGoogle Scholar
Murray, C.B., Norris, D.J., Bawendi, M.G., J. Am. Chem. Soc. 115, 8706 (1993).CrossRefGoogle Scholar
Reiss, P., Protière, M., Li, L., Small 5, 154 (2009).CrossRefGoogle Scholar
Chen, O., Zhao, J., Chauhan, V.P., Cui, J., Wong, C., Harris, D.K., Wei, H., Han, H., Fukumura, D., Jain, R.K., Bawendi, M.G., Nat. Mater. 12, 445 (2013).CrossRefGoogle Scholar
Philippot, C., Reiss, P., in Synthesis of Inorganic Nanocrystals for Biological Fluorescence Imaging, de la Fuente, J.M., Grazu, V., Eds. (Elsevier, Amsterdam, The Netherlands, 2012), pp. 81114.Google Scholar
Kumar, S., Nann, T., Small 2, 316 (2006).CrossRefGoogle Scholar
Cozzoli, P.D., Pellegrino, T., Manna, L., Chem. Soc. Rev. 35, 1195 (2006).CrossRefGoogle Scholar
Peng, Z.A., Peng, X., J. Am. Chem. Soc. 123, 183 (2001).CrossRefGoogle Scholar
Qu, L., Peng, Z.A., Peng, X., Nano Lett. 1, 333 (2001).CrossRefGoogle Scholar
Yang, C., Awschalom, D.D., Stucky, G.D., Chem. Mater. 13, 594 (2001).CrossRefGoogle Scholar
Yu, W., Peng, X., Angew. Chem. Int. Ed. 41, 2368 (2002).3.0.CO;2-G>CrossRefGoogle Scholar
Yu, J.H., Joo, J., Park, H.M., Baik, S.I., Kim, Y.W., Kim, S.C., Hyeon, T., J. Am. Chem. Soc. 127, 5662 (2005).CrossRefGoogle Scholar
Hines, M.A., Guyot-Sionnest, P., J. Phys. Chem. B 102, 3655 (1998).CrossRefGoogle Scholar
Xie, R., Zhong, X., Basché, T., Adv. Mater. 17, 2741 (2005).CrossRefGoogle Scholar
Kortan, A.R., Hull, R., Opila, R.L., Bawendi, M.G., Steigerwald, M.L., Carroll, P.J., Brus, L.E., J. Am. Chem. Soc. 112, 1327 (1990).CrossRefGoogle Scholar
Hines, M.A., Guyot-Sionnest, P., J. Phys. Chem. 100, 468 (1996).CrossRefGoogle Scholar
Dabbousi, B.O., Rodriguez-Viejo, J., Mikulec, F.V., Heine, J.R., Mattoussi, H., Ober, R., Jensen, K.F., Bawendi, M.G., J. Phys. Chem. B 101, 9463 (1997).CrossRefGoogle Scholar
Peng, X., Schlamp, M.C., Kadavanich, A.V., Alivisatos, A.P., J. Am. Chem. Soc. 119, 7019 (1997).CrossRefGoogle Scholar
Li, J.J., Wang, Y.A., Guo, W., Keay, J.C., Mishima, T.D., Johnson, M.B., Peng, X., J. Am. Chem. Soc. 125, 12567 (2003).CrossRefGoogle Scholar
Talapin, D.V., Koeppe, R., Götzinger, S., Kornowski, A., Lupton, J.M., Rogach, A.L., Benson, O., Feldmann, J., Weller, H., Nano Lett. 3, 1677 (2003).CrossRefGoogle Scholar
Talapin, D.V., Nelson, J.H., Shevchenko, E.V., Aloni, S., Sadtler, B., Alivisatos, A.P., Nano Lett. 7, 2951 (2007).CrossRefGoogle Scholar
Carbone, L., Nobile, C., Giorgi, M.D., Sala, F.D., Morello, G., Pompa, P., Hytch, M., Snoeck, E., Fiore, A., Franchini, I.R., Nadasan, M., Silvestre, A.F., Chiodo, L., Kudera, S., Cingolani, R., Krahne, R., Manna, L., Nano Lett. 7, 2942 (2007).CrossRefGoogle Scholar
Steckel, J.S., Snee, P.T., Coe-Sullivan, S.A., Zimmer, J.P., Halpert, J.E., Anikeeva, P.O., Kim, L., Bulovic, V., Bawendi, M.G., Angew. Chem. Int. Ed. 45, 5796 (2006).CrossRefGoogle Scholar
Protière, M., Reiss, P., Small 3, 399 (2007).CrossRefGoogle Scholar
Jun, S., Jang, E., Angew. Chem. Int. Ed. 52, 679 (2013).CrossRefGoogle Scholar
Steckel, J.S., Zimmer, J.P., Coe-Sullivan, S., Stott, N.E., Bulovic, V., Bawendi, M.G., Angew. Chem. Int. Ed. 43, 2154 (2004).CrossRefGoogle Scholar
Protière, M., Reiss, P., Nanoscale Res. Lett. 1, 62 (2006).CrossRefGoogle Scholar
Chen, H.S., Lo, B., Hwang, J.Y., Chang, G.Y., Chen, C.M., Tasi, S.J., Wang, S.J., J. Phys. Chem. B 108, 17119 (2004).CrossRefGoogle Scholar
Lee, J., Sundar, V.C., Heine, J.R., Bawendi, M.G., Jensen, K.F., Adv. Mater. 12, 1102 (2000).3.0.CO;2-J>CrossRefGoogle Scholar
Anikeeva, P.O., Halpert, J.E., Bawendi, M.G., Bulovic, V., Nano Lett. 9, 2532 (2009).CrossRefGoogle Scholar
Nirmal, M., Dabbous, B.O., Bawendi, M.G., Macklin, J.J., Trautman, J.K., Harris, T.D., Brus, L.E., Nature 383, 802 (1996).CrossRefGoogle Scholar
Chung, I., Bawendi, M.G., Phys. Rev. B 70, 165304 (2004).CrossRefGoogle Scholar
Frantsuzov, P., Kuno, M., Janko, B., Marcus, R.A., Nat. Phys. 4, 519 (2008).CrossRefGoogle Scholar
Hohng, S., Ha, T., J. Am. Chem. Soc. 126, 1324 (2004).CrossRefGoogle Scholar
Hammer, N.I., Early, K.T., Sill, K., Odoi, M.Y., Emrick, T., Barnes, M.D., J. Phys. Chem. B 110, 14167 (2006).CrossRefGoogle Scholar
Fomenko, V., Nesbitt, D.J., Nano Lett. 8, 287 (2008).CrossRefGoogle Scholar
Chen, Y.F., Vela, J., Htoon, H., Casson, J.L., Werder, D.J., Bussian, D.A., Klimov, V.I., Hollingsworth, J.A.. J. Am. Chem. Soc. 130, 5026 (2008).CrossRefGoogle Scholar
Mahler, B., Spinicelli, P., Buil, S., Quelin, X., Hermier, J.P., Dubertret, B., Nat. Mater. 7, 659 (2008).CrossRefGoogle Scholar
Hines, M.A., Scholes, G.D., Adv. Mater. 15, 1844 (2003).CrossRefGoogle Scholar
Moreels, I., Justo, Y., Geyter, B.D., Haustraete, K., Martins, J.C., Hens, Z., ACS Nano 5, 2004 (2011).CrossRefGoogle Scholar
Konstantatos, G., Howard, I., Fischer, A., Hoogland, S., Clifford, J., Klem, E., Levina, L., Sargent, E.H., Nature 442, 180 (2006).CrossRefGoogle Scholar
Steckel, J.S., Coe-Sullivan, S., Bulovic, V., Bawendi, M.G., Adv. Mater. 15, 1862 (2003).CrossRefGoogle Scholar
Tang, J., Sargent, E.H.. Adv. Mater. 23, 12 (2011).CrossRefGoogle Scholar
Chen, F., Stokes, K.L., Zhou, W., Fang, J., Murray, C.B., Mater. Res. Soc. Proc. G10.2, 691 (2001).Google Scholar
Pietryga, J.M., Werder, D.J., Williams, D.J., Casson, J.L., Schaller, R.D., Klimov, V.I., Hollingsworth, J.A., J. Am. Chem. Soc. 130, 4879 (2008).CrossRefGoogle Scholar
Geyer, S.M., Scherer, J.M., Moloto, N., Jaworski, F.B., Bawendi, M.G., ACS Nano 5, 5566 (2011).CrossRefGoogle Scholar
Miao, S.D., Hickey, S.G., Rellinghaus, B., Waurisch, C., Eychmuller, A., J. Am. Chem. Soc. 132, 5613 (2010).CrossRefGoogle Scholar
Xie, R., Zhang, J., Zhao, F., Yang, W., Peng, X., Chem. Mater. 22, 3820 (2010).CrossRefGoogle Scholar
Harris, D.K., Allen, P.M., Han, H.S., Walker, B.J., Lee, J.M., Bawendi, M.G., J. Am. Chem. Soc. 133, 4676 (2011).CrossRefGoogle Scholar
Micic, O.I., Curtis, C.J., Jones, K.M., Sprague, J.R., Nozik, A.J., J. Phys. Chem. 98, 4966 (1994).CrossRefGoogle Scholar
Guzelian, A.A., Katari, J.E.B., Kadavanich, A.V., Banin, U., Hamad, K., Juban, E., Alivisatos, A.P., Wolters, R.H., Arnold, C.C., Heath, J.R., J. Phys. Chem. 100, 7212 (1996).CrossRefGoogle Scholar
Guzelian, A.A., Banin, U., Kadavanich, A.V., Peng, X., Alivisatos, A.P., Appl. Phys. Lett. 69, 1432 (1996).CrossRefGoogle Scholar
Battaglia, D., Peng, X.G., Nano Lett. 2, 1027 (2002).CrossRefGoogle Scholar
Xu, S., Kumar, S., Nann, T., J. Am. Chem. Soc. 128, 1054 (2006).CrossRefGoogle Scholar
Xie, R., Battaglia, D., Peng, X., J. Am. Chem. Soc. 129, 15432 (2007).CrossRefGoogle Scholar
Xu, S., Ziegler, J., Nann, T., J. Mater. Chem. 18, 2653 (2008).CrossRefGoogle Scholar
Huang, K., Demadrille, R., Silly, M.G., Sirotti, F., Reiss, P., Renault, O., ACS Nano 4, 4799 (2010).CrossRefGoogle Scholar
Li, L., Reiss, P., J. Am. Chem. Soc. 130, 11588 (2008).CrossRefGoogle Scholar
Lim, J., Bae, W.K., Lee, D., Nam, M.K., Jung, J., Lee, C., Char, K., Lee, S., Chem. Mater. 23, 4459 (2011).CrossRefGoogle Scholar
Kim, K., Lee, H., Ahn, J., Jeong, S., Appl. Phys. Lett. 101, 073107 (2012).CrossRefGoogle Scholar
Cao, Y.W., Banin, U., J. Am. Chem. Soc. 122, 9692 (2000).CrossRefGoogle Scholar
Aharoni, A., Mokari, T., Popov, I., Banin, U., J. Am. Chem. Soc. 128, 257 (2006).CrossRefGoogle Scholar
Xie, R.G., Peng, X.G., Angew. Chem. Int. Ed. 47, 7677 (2008).CrossRefGoogle Scholar
Allen, P.M., Liu, W., Chauhan, V.P., Lee, J., Ting, A.Y., Fukumura, D., Jain, R.K., Bawendi, M.G., J. Am. Chem. Soc. 132, 470 (2009).CrossRefGoogle Scholar
Aldakov, D., Lefrancois, A., Reiss, P., J. Mater. Chem. C 1, 3756 (2013).CrossRefGoogle Scholar
Nairn, J.J., Shapiro, P.J., Twamley, B., Pounds, T., von Wandruszka, R., Fletcher, T.R., Williams, M., Wang, C.M., Norton, M.G., Nano Lett. 6, 1218 (2006).CrossRefGoogle Scholar
Czekelius, C., Hilgendorff, M., Spanhel, L., Bedja, I., Lerch, M., Muller, G., Bloeck, U., Su, D.S., Giersig, M., Adv. Mater. 11, 643 (1999).3.0.CO;2-I>CrossRefGoogle Scholar
Castro, S.L., Bailey, S.G., Raffaelle, R.P., Banger, K.K., Hepp, A.F., Chem. Mater. 15, 3142 (2003).CrossRefGoogle Scholar
Castro, S.L., Bailey, S.G., Raffaelle, R.P., Banger, K.K., Hepp, A.F., J. Phys. Chem. B 108, 12429 (2004).CrossRefGoogle Scholar
Nakamura, H., Kato, W., Uehara, M., Nose, K., Omata, T., Otsuka-Yao-Matsuo, S., Miyazaki, M., Maeda, H., Chem. Mater. 18, 3330 (2006).CrossRefGoogle Scholar
Torimoto, T., Adachi, T., Okazaki, K., Sakuraoka, M., Shibayama, T., Ohtani, B., Kudo, A., Kuwabata, S., J. Am. Chem. Soc. 129, 12388 (2007).CrossRefGoogle Scholar
Li, L., Daou, T., Texier, I., Tran, T., Liem, N., Reiss, P., Chem. Mater. 21, 2422 (2009).CrossRefGoogle Scholar
Li, L., Pandey, A., Werder, D.J., Khanal, B.P., Pietryga, J.M., Klimov, V.I., J. Am. Chem. Soc. 133, 1176 (2011).CrossRefGoogle Scholar
Cassette, E., Pons, T., Bouet, C., Helle, M., Bezdetnaya, L., Marchal, F., Dubertret, B., Chem. Mater. 22, 6117 (2010).CrossRefGoogle Scholar