Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-07T11:44:50.469Z Has data issue: false hasContentIssue false

Quantifying the Kinetics of Crystal Growth by Oriented Aggregation

Published online by Cambridge University Press:  31 January 2011

Nathan D. Burrows
Affiliation:
University of Minnesota, N12, 139 Smith Hall, 207 Pleasant St. SE, Minneapolis, MN 55455, USA; tel. 612-625-3098; and e-mail burro066@umn.edu.
Virany M. Yuwono
Affiliation:
University of Minnesota, N12, 139 Smith Hall, 207 Pleasant St. SE, Minneapolis, MN 55455, USA; tel. 612-625-3098; and e-mail burro066@umn.edu.
R. Lee Penn
Affiliation:
University of Minnesota, N12, 139 Smith Hall, 207 Pleasant St. SE, Minneapolis, MN 55455, USA; tel. 612-625-3098; and e-mail burro066@umn.edu.
Get access

Abstract

Oriented aggregation is a nonclassical crystal growth mechanism resulting in new secondary particles composed of crystallographically aligned primary crystallites. These secondary crystals often have unique and symmetry-defying morphologies, can be twinned, and can contain stacking faults and other significant defects. A wide range of materials, such as titanium dioxide, iron oxides, selenides and sulfides, and metal oxyhydroxides, are known to grow by oriented aggregation under certain conditions. Evidence for oriented aggregation also has been observed in natural materials. Over the last decade, reports of this crystal growth mechanism have appeared with increasing frequency in the scientific literature. The development of kinetic models aimed at improving our fundamental understanding as well as facilitating purposeful control over size, size distribution, and shape has ranged from simple dimer formation models to polymeric models and population balance models. These models have enabled detection and characterization of crystal growth by oriented aggregation using methods such as small-angle x-ray scattering, among others, in addition to transmission electron microscopy. As our fundamental understanding of oriented aggregation improves, novel and complex functional materials are expected to emerge. This article presents a summary of some recent results, methods, and models for characterizing crystal growth by oriented aggregation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Banfield, J.F., Welch, S., Zhang, H.Z., Ebert, T., Penn, R.L., Science 289, 751 (2000).CrossRefGoogle Scholar
2.Penn, R.L., Banfield, J.F., Am. Mineral. 83, 1077 (1998).CrossRefGoogle Scholar
3.Penn, R.L., Banfield, J.F., Science 281, 969 (1998).CrossRefGoogle Scholar
4.Penn, R.L., Banfield, J.F., Geochim. Cosmochim. Acta 63, 1549 (1999).CrossRefGoogle Scholar
5.Bailey, J.K., Brinker, C.J., Mecartney, M.L., J. Colloid Interface Sci. 157, 1 (1993).CrossRefGoogle Scholar
6.Penn, R.L., J. Phys. Chem. B 108, 12707 (2004).CrossRefGoogle Scholar
7.Zhang, Q., Liu, S., Yu, S., J. Mater. Chem. 19, 191 (2009).CrossRefGoogle Scholar
8.Niederberger, M., Cölfen, H., Phys. Chem. Chem. Phys. 8, 3271 (2006).CrossRefGoogle Scholar
9.Isley, S.L., Penn, R.L., J. Phys. Chem. C 112, 4469 (2008).CrossRefGoogle Scholar
10.Oskam, G., Nellore, A., Penn, R.L., Searson, P., J. Phys. Chem. B 107, 1734 (2003).CrossRefGoogle Scholar
11.Penn, R.L., Oskam, G., Strathmann, T., Searson, P., Stone, A., Veblen, D., J. Phys. Chem. B 105, 2177 (2001).CrossRefGoogle Scholar
12.Penn, R.L., Erbs, J.J., Gulliver, D.M., J. Cryst. Growth 293, 1 (2006).CrossRefGoogle Scholar
13.Penn, R.L., Tanaka, K., Erbs, J.J., J. Cryst. Growth 309, 97 (2007).CrossRefGoogle Scholar
14.Ethayaraja, M., Bandyopadhyaya, R., Langmuir 23, 6418 (2007).CrossRefGoogle Scholar
15.Huang, F., Zhang, H.Z., Banfield, J.F., Nano Lett. 3, 373 (2003).CrossRefGoogle Scholar
16.Chiche, D., Digne, M., Revel, R., Chaneac, C., Jolivet, J.P., J. Phys. Chem. C 112, 8524 (2008).CrossRefGoogle Scholar
17.Zeng, H.C., Int. J. Nanotechnol. 4, 329 (2007).CrossRefGoogle Scholar
18.Penn, R.L., Zhu, C., Xu, H., Veblen, D., Geology 29, 843 (2001).2.0.CO;2>CrossRefGoogle Scholar
19.Cölfen, H., Top. Curr. Chem. 271, 1 (2007).CrossRefGoogle Scholar
20.Song, R., Cölfen, H., Xu, A., Hartmann, J., Antonietti, M., ACS Nano 3, 1966 (2009).CrossRefGoogle Scholar
21.Xu, A., Ma, Y., Cölfen, H., J. Mater. Chem. 17, 415 (2007).CrossRefGoogle Scholar
22.Towe, K.M., Berthold, W.U., Appleman, D.E., J. Foraminiferal Res. 7, 58 (1977).CrossRefGoogle Scholar
23.Ribeiro, C., Lee, E., Longo, E., Leite, E.R., ChemPhysChem 6, 690 (2005).CrossRefGoogle Scholar
24.Ribeiro, C., Lee, E., Longo, E., Leite, E.R., ChemPhysChem 7, 664 (2006).CrossRefGoogle Scholar
25.Ji, S., Ye, C., J. Mater. Sci. Technol. 24, 457 (2008).Google Scholar
26.Ratkovich, A.S., Penn, R.L., J. Phys. Chem. C 111, 14098 (2007).CrossRefGoogle Scholar
27.Drews, T.O., Tsapatsis, M., Microporous Mesoporous Mater. 101, 97 (2007).CrossRefGoogle Scholar
28.Kumar, S., Wang, Z., Penn, R.L., Tsapatsis, M., J. Am. Chem. Soc. 130, 17284 (2008).CrossRefGoogle Scholar
29.Mintova, S., Olson, N.H., Senker, J., Bein, T., Angew. Chem. Int. Ed. 41, 2558 (2002).3.0.CO;2-0>CrossRefGoogle Scholar
30.Ziese, U., de Jong, K.P., Koster, A.J., Appl. Catal., A 260, 71 (2004).CrossRefGoogle Scholar
31.Pesika, N.S., Stebe, K.J., Searson, P., J. Phys. Chem. B 107, 10412 (2003).CrossRefGoogle Scholar
32.Viswanatha, R., Sapra, S., Satpati, B., Satyam, P.V., Dev, B.N., Sarma, D.D., J. Mater. Chem. 14, 661 (2004).CrossRefGoogle Scholar
33.Yu, J.H., Joo, J., Park, H.M., Baik, S., Kim, Y.M., Kim, S.C., Hyeon, T., J. Am. Chem. Soc. 127, 5662 (2005).CrossRefGoogle Scholar
34.Krill, C.E., Birringer, R., Philos. Mag. A 77, 621 (1998).CrossRefGoogle Scholar
35.Davis, T.M., Drews, T.O., Ramanan, H., He, C., Dong, J.S., Schnablegger, H., Katsoulakis, M., Kokkoli, E., McCormick, A., Penn, R.L., Tsapatsis, M., Nat. Mater. 5, 400 (2006).CrossRefGoogle Scholar
36.Cölfen, H., Antonietti, M., Mesocrystals and Nonclassical Crystallization. (Wiley, Sussex, 2008), p. 276.CrossRefGoogle Scholar
37.Yang, H.G., Zeng, H.C., Angew. Chem. Int. Ed. 43, 5930 (2004).CrossRefGoogle Scholar
38.Van Hyning, D., Klemperer, W., Zukoski, C., Langmuir 17, 3128 (2001).CrossRefGoogle Scholar
39.Zhang, H., Wang, D., Angew. Chem. Int. Ed. 47, 3984 (2008).CrossRefGoogle Scholar
40.Zhang, J., Wang, Y., Zheng, J., Huang, F., Chen, D., Lan, Y., Ren, G., Lin, Z., Wang, C., J. Phys. Chem. B 111, 1449 (2007).CrossRefGoogle Scholar