Skip to main content
×
Home
    • Aa
    • Aa

Quantum plasmonics

  • Zubin Jacob (a1)
  • DOI: http://dx.doi.org/10.1557/mrs.2012.175
  • Published online: 15 August 2012
Abstract
Abstract

Surface plasmon polaritons, combined excitations of light and free electrons of a metal, have emerged as an alternative information carrier for nanoscale circuitry due to their ability to confine light far below the size of the wavelength. They hold the potential to act as a revolutionary bridge between current diffraction-limited microphotonics and bandwidth-limited nanoelectronics. Interestingly, the nanoscale confinement achievable by plasmons also increases the interaction with quantum emitters, paving the way for quantum applications. Exotic non-classical properties of light such as entanglement and squeezing can be embedded into plasmons and faithfully transmitted and received. Recently, it was also shown that unique coupled plasmonic excitations can be engineered on the nanoscale with artificial media (metamaterials) to enhance and control light-matter interaction. A major departure from the conventional classical description of the plasmon is under development. The aim is to incorporate the “wave” nature of matter manifested in ultra-small metallic nanoparticles and the “particle” nature of light, which can play a role in future integrated circuits with capabilities of quantum information processing. This article reviews developments in the field of quantum nanophotonics, an exciting frontier of plasmonic applications ranging from single photon sources and quantum information transfer to single molecule sensing.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

2.A. Akimov , A. Mukherjee , C. Yu , D. Chang , A. Zibrov , P. Hemmer , H. Park , M. Lukin , Nature 450, 402 (2007).

3.M.A. Nielsen , I.L. Chuang , Quantum Computation and Quantum Information. (Cambridge University Press, UK, 2010).

4.Z. Jacob , V.M. Shalaev , Science 334, 463 (2011).

5.Z. Jacob , J. Kim , G. Naik , A. Boltasseva , E. Narimanov , V. Shalaev , Appl. Phys. B 100, 215 (2010).

6.Z. Jacob , I.I. Smolyaninov , E.E. Narimanov , Appl. Phys. Lett. 100, 181105 (2012).

7.H.N.S. Krishnamoorthy , Z. Jacob , E. Narimanov , I. Kretzschmar , V.M. Menon , Science 336, 205 (2012).

8.E. Altewischer , M. Van Exter , J. Woerdman , Nature 418, 304 (2002).

9.A. Gonzalez-Tudela , D. Martin-Cano , E. Moreno , L. Martin-Moreno , C. Tejedor , F.J. García-Vidal , Phys. Rev. Lett. 106, 20501 (2011).

10.A. Huck , S. Smolka , P. Lodahl , A.S. Sorensen , A. Boltasseva , J. Janousek , U.L. Andersen , Phys. Rev. Lett. 102, 246802 (2009).

11.B. Lounis , M. Orrit , Rep. Prog. Phys. 68, 1129 (2005).

12.P. Grangier , B. Sanders , J. Vuckovic , New J. Phys. 6 (2004).

13.T.M. Babinec , B. Hausmann , M. Khan , Y. Zhang , J.R. Maze , P.R. Hemmer , M. Loncar , Nat. Nanotechnol. 5, 195 (2010).

14.I. Aharonovich , A.D. Greentree , S. Prawer , Nat. Photonics 5, 397 (2011).

15.J.T. Choy , B.J.M. Hausmann , T.M. Babinec , I. Bulu , M. Khan , P. Maletinsky , A. Yacoby , M. Lončar , Nat. Photonics 5, 738 (2011).

16.A. Huck , S. Kumar , A. Shakoor , U. Andersen , Phys. Rev. Lett. 106, 096801 (2011).

17.S. Fasel , F. Robin , E. Moreno , D. Erni , N. Gisin , H. Zbinden , Phys. Rev. Lett. 94, 110501 (2005).

18.C.C. Gerry , P.L. Knight , M. Beck , Am. J. Phys. 73, 1197 (2005).

19.E. Moreno , F.J. García-Vidal , D. Erni , J.I. Cirac , L. Martín-Moreno , Phys. Rev. Lett. 92, 236801 (2004).

20.R. Kolesov , B. Grotz , G. Balasubramanian , R.J. Stöhr , A.A.L. Nicolet , P.R. Hemmer , F. Jelezko , J. Wrachtrup , Nat. Phys. 5, 470 (2009).

21.D.E. Chang , A.S. Sorensen , E.A. Demler , M.D. Lukin , Nat. Phys. 3, 807 (2007).

22.D.J. Bergman , M.I. Stockman , Phys. Rev. Lett. 90, 27402 (2003).

23.M.A. Noginov , G. Zhu , A.M. Belgrave , R. Bakker , V.M. Shalaev , E.E. Narimanov , S. Stout , E. Herz , T. Suteewong , U. Wiesner , Nature 460, 1110 (2009).

24.F.J. García de Abajo , J. Phys. Chem. C 112, 17983 (2008).

25.J. Zuloaga , E. Prodan , P. Nordlander , Nano Lett. 9, 887 (2009).

26.J. Zuloaga , E. Prodan , P. Nordlander , ACS Nano 4, 5269 (2010).

27.J.A. Scholl , A.L. Koh , J.A. Dionne , Nature 483, 421 (2012).

28.W. Cai , V. Shalaev , Optical Metamaterials: Fundamentals and Applications (Springer Verlag, NY, 2009).

29.D.R. Smith , P. Kolinko , D. Schurig , J. Opt. Soc. Am. B: Opt. Phys. 21, 1032 (2004).

30.V.A. Podolskiy , E.E. Narimanov , Phys. Rev. B 71, 201101 (2005).

31.M. Noginov , Y.A. Barnakov , G. Zhu , T. Tumkur , H. Li , E. Narimanov , Appl. Phys. Lett. 94, 151105 (2009).

32.J. Yao , Z. Liu , Y. Liu , Y. Wang , C. Sun , G. Bartal , A.M. Stacy , X. Zhang , Science 321, 930 (2008).

33.A.J. Hoffman , L. Alekseyev , S.S. Howard , K.J. Franz , D. Wasserman , V.A. Podolskiy , E.E. Narimanov , D.L. Sivco , C. Gmachl , Nat. Mater. 6, 946 (2007).

34.Z. Jacob , L.V. Alekseyev , E. Narimanov , Opt. Express 14, 8247 (2006).

35.Z. Liu , H. Lee , Y. Xiong , C. Sun , X. Zhang , Science 315, 1686 (2007).

36.A.A. Govyadinov , V.A. Podolskiy , Phys. Rev. B 73, 155108 (2006).

38.M. Noginov , H. Li , Y.A. Barnakov , D. Dryden , G. Nataraj , G. Zhu , C. Bonner , M. Mayy , Z. Jacob , E. Narimanov , Opt. Lett. 35, 1863 (2010).

39.P. Yao , C. Van Vlack , A. Reza , M. Patterson , M. Dignam , S. Hughes , Phys. Rev. B 80, 195106 (2009).

41.J. Elser , V.A. Podolskiy , I. Salakhutdinov , I. Avrutsky , Appl. Phys. Lett. 90, 191109 (2007).

42.G.V. Naik , J. Kim , A. Boltasseva , Opt. Mater. Express 1, 1090 (2011).

44.C.L. Cortes , W. Newman , S. Molesky , Z. Jacob , J. Opt. 14, 063001 (2012).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords: