Skip to main content
×
Home
    • Aa
    • Aa

Quantum plasmonics

  • Zubin Jacob (a1)
Abstract
Abstract

Surface plasmon polaritons, combined excitations of light and free electrons of a metal, have emerged as an alternative information carrier for nanoscale circuitry due to their ability to confine light far below the size of the wavelength. They hold the potential to act as a revolutionary bridge between current diffraction-limited microphotonics and bandwidth-limited nanoelectronics. Interestingly, the nanoscale confinement achievable by plasmons also increases the interaction with quantum emitters, paving the way for quantum applications. Exotic non-classical properties of light such as entanglement and squeezing can be embedded into plasmons and faithfully transmitted and received. Recently, it was also shown that unique coupled plasmonic excitations can be engineered on the nanoscale with artificial media (metamaterials) to enhance and control light-matter interaction. A major departure from the conventional classical description of the plasmon is under development. The aim is to incorporate the “wave” nature of matter manifested in ultra-small metallic nanoparticles and the “particle” nature of light, which can play a role in future integrated circuits with capabilities of quantum information processing. This article reviews developments in the field of quantum nanophotonics, an exciting frontier of plasmonic applications ranging from single photon sources and quantum information transfer to single molecule sensing.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Quantum plasmonics
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Quantum plasmonics
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Quantum plasmonics
      Available formats
      ×
Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

2. A. Akimov , A. Mukherjee , C. Yu , D. Chang , A. Zibrov , P. Hemmer , H. Park , M. Lukin , Nature 450, 402 (2007).

3. M.A. Nielsen , I.L. Chuang , Quantum Computation and Quantum Information. (Cambridge University Press, UK, 2010).

4. Z. Jacob , V.M. Shalaev , Science 334, 463 (2011).

5. Z. Jacob , J. Kim , G. Naik , A. Boltasseva , E. Narimanov , V. Shalaev , Appl. Phys. B 100, 215 (2010).

6. Z. Jacob , I.I. Smolyaninov , E.E. Narimanov , Appl. Phys. Lett. 100, 181105 (2012).

7. H.N.S. Krishnamoorthy , Z. Jacob , E. Narimanov , I. Kretzschmar , V.M. Menon , Science 336, 205 (2012).

8. E. Altewischer , M. Van Exter , J. Woerdman , Nature 418, 304 (2002).

9. A. Gonzalez-Tudela , D. Martin-Cano , E. Moreno , L. Martin-Moreno , C. Tejedor , F.J. García-Vidal , Phys. Rev. Lett. 106, 20501 (2011).

10. A. Huck , S. Smolka , P. Lodahl , A.S. Sorensen , A. Boltasseva , J. Janousek , U.L. Andersen , Phys. Rev. Lett. 102, 246802 (2009).

11. B. Lounis , M. Orrit , Rep. Prog. Phys. 68, 1129 (2005).

12. P. Grangier , B. Sanders , J. Vuckovic , New J. Phys. 6 (2004).

13. T.M. Babinec , B. Hausmann , M. Khan , Y. Zhang , J.R. Maze , P.R. Hemmer , M. Loncar , Nat. Nanotechnol. 5, 195 (2010).

14. I. Aharonovich , A.D. Greentree , S. Prawer , Nat. Photonics 5, 397 (2011).

15. J.T. Choy , B.J.M. Hausmann , T.M. Babinec , I. Bulu , M. Khan , P. Maletinsky , A. Yacoby , M. Lončar , Nat. Photonics 5, 738 (2011).

16. A. Huck , S. Kumar , A. Shakoor , U. Andersen , Phys. Rev. Lett. 106, 096801 (2011).

17. S. Fasel , F. Robin , E. Moreno , D. Erni , N. Gisin , H. Zbinden , Phys. Rev. Lett. 94, 110501 (2005).

18. C.C. Gerry , P.L. Knight , M. Beck , Am. J. Phys. 73, 1197 (2005).

19. E. Moreno , F.J. García-Vidal , D. Erni , J.I. Cirac , L. Martín-Moreno , Phys. Rev. Lett. 92, 236801 (2004).

20. R. Kolesov , B. Grotz , G. Balasubramanian , R.J. Stöhr , A.A.L. Nicolet , P.R. Hemmer , F. Jelezko , J. Wrachtrup , Nat. Phys. 5, 470 (2009).

21. D.E. Chang , A.S. Sorensen , E.A. Demler , M.D. Lukin , Nat. Phys. 3, 807 (2007).

22. D.J. Bergman , M.I. Stockman , Phys. Rev. Lett. 90, 27402 (2003).

23. M.A. Noginov , G. Zhu , A.M. Belgrave , R. Bakker , V.M. Shalaev , E.E. Narimanov , S. Stout , E. Herz , T. Suteewong , U. Wiesner , Nature 460, 1110 (2009).

24. F.J. García de Abajo , J. Phys. Chem. C 112, 17983 (2008).

25. J. Zuloaga , E. Prodan , P. Nordlander , Nano Lett. 9, 887 (2009).

26. J. Zuloaga , E. Prodan , P. Nordlander , ACS Nano 4, 5269 (2010).

27. J.A. Scholl , A.L. Koh , J.A. Dionne , Nature 483, 421 (2012).

28. W. Cai , V. Shalaev , Optical Metamaterials: Fundamentals and Applications (Springer Verlag, NY, 2009).

29. D.R. Smith , P. Kolinko , D. Schurig , J. Opt. Soc. Am. B: Opt. Phys. 21, 1032 (2004).

30. V.A. Podolskiy , E.E. Narimanov , Phys. Rev. B 71, 201101 (2005).

31. M. Noginov , Y.A. Barnakov , G. Zhu , T. Tumkur , H. Li , E. Narimanov , Appl. Phys. Lett. 94, 151105 (2009).

32. J. Yao , Z. Liu , Y. Liu , Y. Wang , C. Sun , G. Bartal , A.M. Stacy , X. Zhang , Science 321, 930 (2008).

33. A.J. Hoffman , L. Alekseyev , S.S. Howard , K.J. Franz , D. Wasserman , V.A. Podolskiy , E.E. Narimanov , D.L. Sivco , C. Gmachl , Nat. Mater. 6, 946 (2007).

34. Z. Jacob , L.V. Alekseyev , E. Narimanov , Opt. Express 14, 8247 (2006).

35. Z. Liu , H. Lee , Y. Xiong , C. Sun , X. Zhang , Science 315, 1686 (2007).

36. A.A. Govyadinov , V.A. Podolskiy , Phys. Rev. B 73, 155108 (2006).

38. M. Noginov , H. Li , Y.A. Barnakov , D. Dryden , G. Nataraj , G. Zhu , C. Bonner , M. Mayy , Z. Jacob , E. Narimanov , Opt. Lett. 35, 1863 (2010).

39. P. Yao , C. Van Vlack , A. Reza , M. Patterson , M. Dignam , S. Hughes , Phys. Rev. B 80, 195106 (2009).

41. J. Elser , V.A. Podolskiy , I. Salakhutdinov , I. Avrutsky , Appl. Phys. Lett. 90, 191109 (2007).

42. G.V. Naik , J. Kim , A. Boltasseva , Opt. Mater. Express 1, 1090 (2011).

44. C.L. Cortes , W. Newman , S. Molesky , Z. Jacob , J. Opt. 14, 063001 (2012).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 11
Total number of PDF views: 88 *
Loading metrics...

Abstract views

Total abstract views: 159 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th May 2017. This data will be updated every 24 hours.