Skip to main content
×
×
Home

Recent developments in solar water-splitting photocatalysis

  • Frank E. Osterloh (a1) and Bruce A. Parkinson (a2)
Abstract

Although photovoltaic cells have great potential for supplying carbon-free energy, they suffer from the lack of an efficient and cost-effective energy storage process that can supply energy for transportation and nighttime use. A direct way to convert solar energy into chemical fuels would solve this problem. Of several possible schemes, the photon-driven electrolysis of water to produce hydrogen and oxygen has been studied most. Photoelectrolysis of water can be achieved with either self-supported catalysts or with photoelectrochemical cells. This article will introduce the basic principles of solar water splitting and highlight recent developments with semiconductor light absorbers and co-catalysts. The role of combinatorial approaches in identifying new metal oxide visible light-absorbing semiconductors will be briefly described, and the potential of using nanomaterials for more efficient devices will be discussed. Separate articles in this special issue will focus on recent developments in water-splitting concepts.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Recent developments in solar water-splitting photocatalysis
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Recent developments in solar water-splitting photocatalysis
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Recent developments in solar water-splitting photocatalysis
      Available formats
      ×
Copyright
References
Hide All
1.Lewis, N.S., Nocera, D.G., Proc. Nat. Acad. Sci. U.S.A. 103, 15729 (2006).
2.Kodama, T., Gokon, N., Chem. Rev. 107, 4048 (2007).
3.Abanades, S., Charvin, P., Flamant, G., Neveu, P., Energy 31, 2805 (2006).
4.Boddy, P.J., J. Electrochem. Soc. 115, 199 (1968).
5.Fujishima, A., Honda, K., Nature 238, 37 (1972).
6.Fujishima, A., Honda, K., Bull. Chem. Soc. Jpn. 44, 1148 (1971).
7.Khaselev, O., Turner, J.A., Science 280, 425 (1998).
8.Abe, R., Sayama, K., Domen, K., Arakawa, H., Chem. Phys. Lett. 344, 339 (2001).
9.Maeda, K., Teramura, K., Lu, D.L., Saito, N., Inoue, Y., Domen, K., Angew. Chem. Int. Ed. 45, 7806 (2006).
10.Surendranath, Y., Dincǎ, M., Nocera, D.G., J. Am. Chem. Soc. 131, 2615 (2009).
11.Shockley, W., Queisser, H.J., J. Appl. Phys. 32, 510 (1961).
12.Bolton, J.R., Strickler, S.J., Connolly, J.S., Nature 316, 495 (1985).
13.Varghese, O.K., Grimes, C.A., Sol. Energy Mater. Sol. Cells 92, 374 (2008).
14.Weber, M.F., Dignam, M.J., Int. J. Hydrogen Energy 11, 225 (1986).
15.Cesar, I., Kay, A., Martinez, J.A.G., Gratzel, M., J. Am. Chem. Soc., 128, 4582 (2006).
16.Cesar, I., Sivula, K., Kay, A., Zboril, R., Grätzel, M., J. Phys. Chem. C 113, 772 (2009).
17.Duret, A., Grätzel, M., J. Phys. Chem. B 109, 17184 (2005).
18.Zhong, D.K., Sun, J.W., Inumaru, H., Gamelin, D.R., J. Am. Chem. Soc. 131, 6086 (2009).
19.Frame, F.A., Carroll, E.C., Larsen, D.S., Sarahan, M.S., Browning, N.D., Osterloh, F.E., Chem. Commun. 2206 (2008).
20.Frame, F.A., Osterloh, F.E., J. Phys. Chem. C, 114, 10628 (2010).
21.Reddington, E., Sapienza, A., Gurau, B., Viswanathan, R., Sarangapeni, S., Smotkin, E.S., Mallouk, T.E., Science 280, 1735 (1998).
22.Baeck, S.H., Jaramillo, T.F., Brandli, C., McFarland, E.W., J. Comb. Chem. 4, 563 (2002).
23.Woodhouse, M., Herman, G.S., Parkinson, B.A., Chem. Mater. 17, 4318 (2005).
24.Cong, P., Doolen, R.D., Fan, Q., Giaquinta, D.M., Guan, S., McFarland, E.W., Poojary, D., Self, K., Turner, H.W., Weinberg, W.H., Angew. Chem. Int. Ed. 38, 484 (1999).
25.Sirringhaus, H., Kawase, T., Friend, R.H., Shimoda, T., Inbasekaran, M., Wu, W., Woo, E.P., Science 290, 2123 (2000).
26.MacBeath, G., Schreiber, S.L., Science 289, 1760 (2000).
27.Woodhouse, M., Parkinson, B.A., Chem. Mater. 20, 2495 (2008).
28.Parkinson, B., Energy Environ. Sci. 3, 509 (2010).
30.Turner, J., Nat. Mater. 7, 770 (2008).
31.Sambur, J.B., Novet, T., Parkinson, B.A., Science, 330, 63 (2010).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed