Skip to main content Accessibility help
×
×
Home

Self-Assembly in Materials Synthesis

  • Matthew V. Tirrell and Alexander Katz

Abstract

The synthesis of materials via self-assembly typically involves the spontaneous and reversible organization of small building blocks for the purpose of creating conglomerate structures over larger length scales. This introductory article describes self-assembly processes on several length scales, from subnanometer up to millimeter scales, and briefly summarizes some of the incredible diversity of materials that exhibit selfassembly. Articles in this issue cover self-assembly using zeolitic structures, organic molecular crystals, block copolymers, surfactants, mesoscale templates, and soluble crystallization additives. Keywords: block copolymers, materials synthesis, self-assembly, surfactants, templates, zeolites.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Self-Assembly in Materials Synthesis
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Self-Assembly in Materials Synthesis
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Self-Assembly in Materials Synthesis
      Available formats
      ×

Copyright

References

Hide All
1.Whitesides, G.M. and Grzybowski, R., Science 295 (2002) p. 2418.
2.W., Jones and C.N.R., Rao, eds., Supramolecular Organization and Materials Design (Cambridge University Press, Cambridge, UK, 2002).
3.D.N., Reinhoudt, ed., Perspectives in Supramolecular Chemistry, Vol. 4 (John Wiley & Sons, West Sussex, England, 1999).
4.Tirrell, M., AIChE J. 51 (2005) p. 2386.
5.Hayoz, P., von Zelewsky, A., and Stoeckli-Evans, H., J. Am. Chem. Soc. 115 (1993) p. 5111.
6.Jung, J.H., Ono, Y., Hanabusa, K., and Shinkai, S., J. Am. Chem. Soc. 122 (2000) p. 5008.
7.Jouaiti, A., Hosseini, M.W., and Kyritsakas, N., Chem. Commun. 17 (2002) p. 1898.
8.Fiedler, D., Leung, D.H., Bergman, R.G., and Raymond, K.N., Acc. Chem. Res. 38 (2005) p. 349.
9.Williams, R.J.P., Trends Biochem. Sci. 18 (1993) p. 115
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed