Skip to main content

Self-Assembly of Block Copolymers for Photonic-Bandgap Materials

  • Jongseung Yoon, Wonmok Lee and Edwin L. Thomas

Self-assembled block copolymer systems with an appropriate molecular weight to produce a length scale that will interact with visible light are an alternative platform material for the fabrication of large-area, well-ordered photonic-bandgap structures at visible and near-IR frequencies.Over the past years, one-, two-, and three-dimensional photonic crystals have been demonstrated with various microdomain structures created through microphase separation of block copolymers. The size and shape of periodic microstructures of block copolymers can be readily tuned by molecular weight, relative composition of the copolymer, and blending with homopolymers or plasticizers.The versatility of photonic crystals based on block copolymers is further increased by incorporating inorganic nanoparticles or liquid-crystalline guest molecules (or using a liquid-crystalline block), or by selective etching of one of the microdomains and backfilling with high-refractive-index materials. This article presents an overview of photonic-bandgap materials enabled by self-assembled block copolymers and discusses the morphology and photonic properties of block-copolymer-based photonic crystals containing nanocomposite additives.We also provide a view of the direction of future research, especially toward novel photonic devices.

Hide All
1Park C., Yoon J., and Thomas E.L., Polymer 44 (2003)p. 6725.
2Thomas E.L. and Lescanec R.L., Philos. Trans. R. Soc. London, Ser. A 348 (1994)p. 149.
3Edrington A.C., Urbas A.M., DeRege P., Chen C.X., Swager T.M., Hadjichristidis N., Xenidou M., Fetters L.J., Joannopoulos J.D., Fink Y., and Thomas E.L., Adv. Mater. 13 (2001)p. 421.
4Temelkuran B., Hart S.D., Benoit G., Joannopoulos J.D., and Fink Y., Nature 420 (2002)p. 650.
5Chow E., Grot A., Mirkarimi L.W., Sigalas M., and Girolami G., Optics Lett. 29 (2004)p. 1093.
6Scalora M., Dowling J.P., Bowden C.M., and Bloemer M.J., Phys. Rev. Lett. 73 (1994)p. 1368.
7Joannopoulos J.D., Meade R.D., and Winn J.N., Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995).
8Noda S., Tomoda K., Yamamoto N., and Chutinan A., Science 289 (2000)p. 604.
9Qi M.H., Lidorikis E., Rakich P.T., Johnson S.G., Joannopoulos J.D., Ippen E.P., and Smith H.I., Nature 429 (2004)p. 538.
10Campbell M., Sharp D.N., Harrison M.T., Denning R.G., and Turberfield A.J., Nature 404 (2000)p.53.
11Ullal C.K., Maldovan M., Wohlgemuth M., and Thomas E.L., J. Opt. Soc. Am. A: Opt. Image Sci. Vis. 20 (2003)p. 948.
12Holland B.T., Blanford C.F., and Stein A., Science 281 (1998)p. 538.
13Braun P.V. and Wiltzius P., Nature 402 (1999)p. 603.
14Wijnhoven J. and Vos W.L., Science 281 (1998)p. 802.
15Fink Y., Urbas A.M., Bawendi M.G., Joannopoulos J.D., and Thomas E.L., J. Lightwave Technol. 17 (1999)p. 1963.
16Urbas A., Fink Y., and Thomas E.L., Macromolecules 32 (1999)p. 4748.
17Urbas A., Sharp R., Fink Y., Thomas E.L., Xenidou M., and Fetters L.J., Adv. Mater. 12 (2000)p. 812.
18Yeh P., Yariv H., and Shan C., J. Opt. Soc. Am. 67 (1977)p. 423.
19Born M. and Wolf E., Principles of Optics, 7th ed. (Cambridge University Press, Cambridge, UK, 1999).
20Deng T., Chen C.T., Honeker C., and Thomas E.L., Polymer 44 (2003)p. 6549.
21Yablonovitch E., Phys. Rev. Lett. 58 (1987)p. 2059.
22John S., Phys. Rev. Lett. 58 (1987)p. 2486.
23Yablonovitch E. and Gmitter T.J., Phys. Rev. Lett. 63 (1989)p. 1950.
24Sozuer H.S., Haus J.W., and Inguva R., Phys. Rev. B 45 (1992)p. 13962.
25Chan C.T., Ho K.M., and Soukoulis C.M., Europhys. Lett. 16 (1991)p. 563.
26Urbas A.M., Maldovan M., DeRege P., and Thomas E.L., Adv. Mater. 14 (2002)p. 1850.
27Maldovan M., Urbas A.M., Yufa N., Carter W.C., and Thomas E.L., Phys. Rev. B 65 165123 (2002).
28Bockstaller M., Kolb R., and Thomas E.L., Adv. Mater. 13 (2001)p. 1783.
29Bockstaller M.R. and Thomas E.L., J. Phys. Chem. B 107 (2003)p. 10017.
30Bockstaller M.R. and Thomas E.L., Phys. Rev. Lett. 93 166106 (2004).
31Huh J., Ginzburg V.V., and Balazs A.C., Macromolecules 33 (2000)p. 8085.
32Thompson R.B., Ginzburg V.V., Mat-sen M.W., and Balazs A.C., Science 292 (2001)p. 2469.
33Lee J.Y., Thompson R.B., Jasnow D., and Balazs A.C., Macromolecules 35 (2002)p. 4855.
34Buxton G.A., Lee J.Y., and Balazs A.C., Macromolecules 36 (2003)p. 9631.
35Bockstaller M.R., Lapetnikov Y., Margel S., and Thomas E.L., J. Am. Chem. Soc. 127 (2003)p. 5276.
36Chiu J.J., Kim B.J., Kramer E.J., and Pine D.J., J. Am. Chem. Soc. 127 (2005)p. 5036.
37Bockstaller M.R., Mickiewicz R.A., and Thomas E.L., Adv. Mater. 17 (2005)p. 1331.
38Osuji C., Chao C.Y., Bita I., Ober C.K., and Thomas E.L., Adv. Funct. Mater. 12 (2002)p. 753.
39Valkama S., Kosonen H., Ruokolainen J., Haatainen T., Torkkeli M., Serimaa R., Brinke G. Ten, and Ikkala O., Nature Mater. 3 (2004)p. 872.
40Urbas A., “Block Copolymer Photonic Crystals,” PhD Thesis, Massachusetts Institute of Technology (2003).
41Rosa C. De, Park C., Lotz B., Wittmann J.C., Fetters L.J., and Thomas E.L., Macromolecules 33 (2000)p. 4871.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 81 *
Loading metrics...

Abstract views

Total abstract views: 216 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd February 2018. This data will be updated every 24 hours.