Skip to main content Accessibility help

Self-folding thin-film materials: From nanopolyhedra to graphene origami

  • Vivek B. Shenoy (a1) and David H. Gracias (a2)


Self-folding of thin films is a more deterministic form of self-assembly wherein structures curve or fold up either spontaneously on release from the substrate or in response to specific stimuli. From an intellectual standpoint, the study of the self-folding of thin films at small size scales is motivated by the observation that a large number of naturally occurring materials such as leaves and tissues show curved, wrinkled, or folded micro- and nanoscale geometries. From a technological standpoint, such a self-assembly methodology is important since it can be used to transform the precision of existing planar patterning methods, such as electron-beam lithography, to the third dimension. Also, the self-folding of graphene promises a means to create a variety of three-dimensional carbon-based micro- and nanostructures. Finally, stimuli responsive self-folding can be used to realize chemomechanical and tether-free actuation at small size scales. Here, we review theoretical and experimental aspects of the self-folding of metallic, semiconducting, and polymeric films.



Hide All
1.Stoney, G.G., Proc. R. Soc. London, Ser. A 82, 172 (1909).
2.Prinz, V.Y., Seleznev, V.A., Gutakovsky, A.K., Chehovskiy, A.V., Preobrazhenskii, V.V., Putyato, M.A., Gavrilova, T.A., Physica E 6, 828 (2000).
3.Schmidt, O.G., Eberl, K., Nature 410, 168 (2001).
4.Chua, C.L., Fork, D.K., Van Schuylenbergh, K., Lu, J.P., J. Microelectromech. Syst. 12, 989 (2003).
5.Arora, W.J., Nichol, A.J., Smith, H.I., Barbastathis, G., Appl. Phys. Lett. 88, 053108 (2006).
6.Tyagi, P., Bassik, N., Leong, T.G., Cho, J.H., Benson, B.R., Gracias, D.H., J. Microelectromech. Syst. 18, 784 (2009).
7.Cho, J.H., James, T., Gracias, D.H., Adv. Mater. 22, 2320 (2010).
8.Songmuang, R., Rastelli, A., Mendach, S., Schmidt, O.G., Appl. Phys. Lett. 90, 091905 (2007).
9.Guan, J.J., He, H.Y., Hansford, D.J., Lee, L.J., J. Phys. Chem. B 109, 23134 (2005).
10.Luchnikov, V., Sydorenko, O., Stamm, M., Adv. Mater. 17, 1177 (2005).
11.Zakharchenko, S., Sperling, E., Ionov, L., Biomacromol. 12, 2211 (2011).
12.Jamal, M., Zarafshar, A.M., Gracias, D.H., Nat. Commun. 2, 527 (2011).
13.Mutilin, S.V., Vorobyova, J.S., Vorob’ev, A.B., Putyato, M.A., Prinz, V.Y., J. Phys. D: Appl. Phys. 44, 365104 (2011).
14.Ma, L.B., Kiravittaya, S., Quinones, V.A.B., Li, S.L., Mei, Y.F., Schmidt, O.G., Opt. Lett. 36, 3840 (2011).
15.Naumova, E.V., Prinz, V.Y., Golod, S.V., Seleznev, V.A., Soots, R.A., Kubarev, V.V., J. Opt. A: Pure Appl. Opt. 11, 074010 (2009).
16.Smith, E.J., Schulze, S., Kiravittaya, S., Mei, Y.F., Sanchez, S., Schmidt, O.G., Nano Lett. 11, 4037 (2011).
17.Monch, I., Makarov, D., Koseva, R., Baraban, L., Karnaushenko, D., Kaiser, C., Arndt, K.F., Schmidt, O.G., ACS Nano 5, 7436 (2011).
18.Bufon, C.C.B., Gonzalez, J.D.C., Thurmer, D.J., Grimm, D., Bauer, M., Schmidt, O.G., Nano Lett. 10, 2506 (2010).
19.Kim, J.B., Kim, P., Pégard, N.C., Oh, S.J., Kagan, C.R., Fleischer, J.W., Stone, H.A., Loo, Y.-L., Nat. Photonics 6, 327 (2012).
20.He, H.Y., Guan, J.J., Lee, J.L., J. Controlled Release 110, 339 (2006).
21.Yuan, B., Jin, Y., Sun, Y., Wang, D., Sun, J., Wang, Z., Zhang, W., Jiang, X., Adv. Mater. 24, 890 (2012).
22.Solovev, A.A., Xi, W., Gracias, D.H., Harazim, S.M., Deneke, C., Sanchez, S., Schmidt, O.G., ACS Nano 6, 1751 (2012).
23.Syms, R.R.A., Yeatman, E.M., Bright, V.M., Whitesides, G.M., J. Microelectromech. Syst. 12, 387 (2003).
24.Leong, T.G., Zarafshar, A.M., Gracias, D.H., Small 6, 792 (2010).
25.Syms, R.R.A., Yeatman, E.M., Electron. Lett. 29, 662 (1993).
26.Bar-Cohen, Y., Electroactive Polymer (EAP) Actuators As Artificial Muscles: Reality, Potential, and Challenges (Society of Photo-Optical Instrumentation Engineers, Bellingham, WA, 2004).
27.Smela, E., Inganas, O., Pei, Q.B., Lundstrom, I., Adv. Mater. 5, 630 (1993).
28.Smela, E., Inganas, O., Lundstrom, I., Science 268, 1735 (1995).
29.Cho, J.H., Gracias, D.H., Nano Lett. 9, 4049 (2009).
30.Cho, J.H., Keung, M.D., Verellen, N., Lagae, L., Moshchalkov, V.V., Van Dorpe, P., Gracias, D.H., Small 7, 1943 (2011).
31.Cho, J.H., Azam, A., Gracias, D.H., Langmuir 26, 16534 (2010).
32.Pandey, S., Ewing, M., Kunas, A., Nguyen, N., Gracias, D.H., Menon, G., Proc. Natl. Acad. Sci. U.S.A. 108, 19885 (2011).
33.Bassik, N., Stern, G.M., Jamal, M., Gracias, D.H., Adv. Mater. 20, 4760 (2008).
34.Syms, R.R.A., IEEE Photonics Technol. Lett. 12, 1519 (2000).
35.In, H.J., Kumar, S., Shao-Horn, Y., Barbastathis, G., Appl. Phys. Lett. 88, 083104 (2006).
36.Cho, J.H., Hu, S., Gracias, D.H., Appl. Phys. Lett. 93, 043505 (2008).
37.Randhawa, J.S., Gurbani, S.S., Keung, M.D., Demers, D.P., Leahy-Hoppa, M.R., Gracias, D.H., Appl. Phys. Lett. 96, 191108 (2010).
38.Guo, X.Y., Li, H., Ahn, B.Y., Duoss, E.B., Hsia, K.J., Lewis, J.A., Nuzzo, R.G., Proc. Natl. Acad. Sci. U.S.A. 106, 20149 (2009).
39.Ionov, L., Soft Matter 7, 6786 (2011).
40.Shim, T.S., Kim, S.H., Heo, C.J., Jeon, H.C., Yang, S.M., Angew. Chem. Int. Ed. 51, 1420 (2012).
41.Liu, Y.K., Smela, E., Nelson, N.M., Abshire, P., Proc. Ann. Int. Conf. IEEE EMBS 26, 2534 (2004).
42.Randall, C.L., Kalinin, Y.V., Jamal, M., Manohar, T., Gracias, D.H., Lab Chip 11, 127 (2011).
43.Lu, Y.W., Kim, C.J., Appl. Phys. Lett. 89, 164101 (2006).
44.Leong, T.G., Randall, C.L., Benson, B.R., Bassik, N., Stern, G.M., Gracias, D.H., Proc. Natl. Acad. Sci. U.S.A. 106, 703 (2009).
45.Guo, F., Kim, F., Han, T.H., Shenoy, V.B., Huang, J.X., Hurt, R.H., ACS Nano 5, 8019 (2011).
46.Chen, Y., Guo, F., Jachak, A., Kim, S.-P., Datta, D., Liu, J., Kulaots, I., Vaslet, C., Jang, H.D., Huang, J., Kane, A., Shenoy, V.B., Hurt, R.H., Nano Lett. 12, 1996 (2012).
47.Kim, K., Lee, Z., Malone, B.D., Chan, K.T., Aleman, B., Regan, W., Gannett, W., Crommie, M.F., Cohen, M.L., Zettl, A., Phys. Rev. B 83 (2011).
48.Patra, N., Wang, B.Y., Kral, P., Nano Lett. 9, 3766 (2009).
49.Prada, E., San-Jose, P., Brey, L., Phys. Rev. Lett. 105, 106802 (2010).
50.Rainis, D., Taddei, F., Polini, M., Leon, G., Guinea, F., Fal’ko, V.I., Phys. Rev. B 83, 8 (2011).
51.Gellman, S.H., Acc. Chem. Res. 31, 173 (1998).
52.Rothemund, P.W.K., Nature 440, 297 (2006).
53.He, Y., Ye, T., Su, M., Zhang, C., Ribbe, A.E., Jiang, W., Mao, C.D., Nature 452, 198 (2008).
54.Landau, L.D., Lifshitz, E.M., Theory of Elasticity, 3rd ed. (Pergamon Press, Oxford, 1986).
55.Timoshenko, S., J. Opt. Soc. Am. Rev. Sci. Instrum. 11, 233 (1925).
56.Klein, C.A., Miller, R.P., J. Appl. Phys. 87, 2265 (2000).
57.Hsueh, C.H., J. Appl. Phys. 91, 9652 (2002).
58.Nikishkov, G.P., J. Appl. Phys. 94, 5333 (2003).
59.Freund, L.B., Suresh, S., Thin Film Materials: Stress, Defect Formation, and Surface Evolution, 1st paperback edition (Cambridge University Press, UK, 2009).
60.Giannakopoulos, A.E., Blech, I.A., Suresh, S., Acta Mater. 49, 3671 (2001).
61.Alben, S., Balakrisnan, B., Smela, E., Nano Lett. 11, 2280 (2011).
62.Cho, J.H., Datta, D., Park, S.Y., Shenoy, V.B., Gracias, D.H., Nano Lett. 10, 5098 (2010).
63.Moiseeva, E., Senousy, Y.M., McNamara, S., Harnett, C.K., J. Micromech. Microeng. 17, N63 (2007).
64.Huang, M.H., Cavallo, F., Liu, F., Lagally, M.G., Nanoscale 3, 96 (2011).
65.Kumar, K., Luchnikov, V., Nandan, B., Zakharchenko, S., Ionov, L., Mater. Res. Soc. Symp. Proc. 1272 (2010).
66.Azam, A., Laflin, K.E., Jamal, M., Fernandes, R., Gracias, D.H., Biomed. Microdevices 13, 51 (2011).
67.Zhang, J., Xiao, J.L., Meng, X.H., Monroe, C., Huang, Y.G., Zuo, J.M., Phys. Rev. Lett. 104, 4 (2010).
68.Mahadevan, L., Rica, S., Science 307, 1740 (2005).
69.Bowden, N., Brittain, S., Evans, A.G., Hutchinson, J.W., Whitesides, G.M., Nature 393, 146 (1998).
70.Huck, W.T.S., Bowden, N., Onck, P., Pardoen, T., Hutchinson, J.W., Whitesides, G.M., Langmuir 16, 3497 (2000).
71.Schweikart, A., Fery, A., Microchim. Acta 165, 249 (2009).
72.Kim, P., Abkarian, M., Stone, H.A., Nat. Mater. 10, 952 (2011).
73.Bassik, N., Stern, G.M., Gracias, D.H., Appl. Phys. Lett. 95, 91901 (2009).
74.Harrington, M.J., Razghandi, K., Ditsch, F., Guiducci, L., Rueggeberg, M., Dunlop, J.W.C., Fratzl, P., Neinhuis, C., Burgert, I., Nat. Commun. 2 (2011).
75.Randhawa, J.S., Keung, M.D., Tyagi, P., Gracias, D.H., Adv. Mater. 22, 407 (2010).
76.Fernandes, R., Gracias, D.H., Adv. Drug Delivery Rev. (2012), doi:10.1016/j.addr.2012.12.012.
77.Kim, J., Hanna, J.A., Byun, M., Santangelo, C.D., Hayward, R.C., Science 335, 1201 (2012).
78.Hawkes, E., An, B., Benbernou, N.M., Tanaka, H., Kim, S., Demaine, E.D., Rus, D., Wood, R.J., Proc. Natl. Acad. Sci. U.S.A. 107, 12441 (2010).
79.Harazim, S.M., Xi, W., Schmidt, C.K., Sanchez, S., Schmidt, O.G., J. Mater. Chem. 22, 2878 (2012).


Self-folding thin-film materials: From nanopolyhedra to graphene origami

  • Vivek B. Shenoy (a1) and David H. Gracias (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed