Skip to main content Accessibility help
×
Home

Set in stone? A perspective on the concrete sustainability challenge

  • Krystyn Van Vliet (a1), Roland Pellenq (a2), Markus J. Buehler (a3), Jeffrey C. Grossman (a4), Hamlin Jennings (a5), Franz-Josef Ulm (a6) and Sidney Yip (a7)...

Abstract

As the most abundant engineered material on Earth, concrete is essential to the physical infrastructure of all modern societies. There are no known materials that can replace concrete in terms of cost and availability. There are, however, environmental concerns, including the significant CO2 emissions associated with cement production, which create new incentives for university–industry collaboration to address concrete sustainability. Herein, we examine one aspect of this challenge—the translation of scientific understanding at the microscale into industrial innovation at the macroscale—by seeking improvements in cement-paste processing, performance, and sustainability through control of the mechanisms that govern microstructure development. Specifically, we consider modeling, simulation, and experimental advances in fracture, dissolution, precipitation, and hydration of cement paste precursors, as well as properties of the hardened cement paste within concrete. The aim of such studies is to optimize the chemical reactivity, mechanical performance, and other physical properties of cement paste to enable more sustainable processing routes for this ubiquitous material.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Set in stone? A perspective on the concrete sustainability challenge
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Set in stone? A perspective on the concrete sustainability challenge
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Set in stone? A perspective on the concrete sustainability challenge
      Available formats
      ×

Copyright

References

Hide All
1.Staniford, S., “A Pretty Stunning Graph of World Cement Production” (Institute for the Study of Energy and Our Future, Fort Collins, CO), oildrum.com/node/4162 (accessed March 2012).
2.van Oss, H.G., in Mineral Commodity Summaries 2006 (U.S. Geological Survey, Reston, VA, 2006), pp. 44–45.
3.van Oss, H.G., in Mineral Commodity Summaries 2008 (U.S. Geological Survey, Reston, VA, 2008), pp. 44–45.
4.Global Cement Report (International Cement Review, London, ed. 9, 2011).
5.Ochsendorf, J.E.A., Norford, L.K., Brown, D., Durschlag, H., Hsu, S.L., Love, A., Santero, N., Swei, O., Webb, A., Wildnauer, M., Methods, Impacts, and Opportunities in the Concrete Building Life Cycle (Research Report R11–01, Massachusetts Institute of Technology, Cambridge, MA, 2011).
6.Yip, S., Ed., Handbook of Materials Modeling (Springer, New York, 2005).
7.Stark, J., Cem. Concr. Res. 41, 666 (2011).
8.Thomas, J.J., Biernacki, J.J., Bullard, J.W., Bishnoi, S., Dolado, J.S., Scherer, G.W., Luttge, A., Cem. Concr. Res. 41, 1257 (2011).
9.Bishnoi, S., Scrivener, K., Cem. Concr. Res. 39, 266 (2009).
10.Taylor, H.F., Cement Chemistry (Thomas Telford, London, ed. 2, 1997).
11.Ulm, F.J., Akono, A.T., Reis, P.M., Phys. Rev. Lett. 106, 204302 (2011).
12.Chatterjee, A.K., Cem. Concr. Res. 26, 1213 (1996).
13.Popescu, C.D., Muntean, M., Sharp, J.H., Cem. Concr. Compos. 25, 689 (2003).
14.Gartner, E.M., Macphee, D.E., Cem. Concr. Res. 41, 736 (2011).
15.Allen, A.J., Thomas, J.J., Jennings, H.M., Nat. Mater. 6, 311 (2007).
16.Skinner, L.B., Chae, S.R., Benmore, C.J., Monteiro, P., Phys. Rev. Lett. 104, 195502 (2010).
17.Pellenq, R.J.-M., Kushima, A., Shahsavari, R., Van Vliet, K.J., Buehler, M.J., Yip, S., Ulm, F.J., Proc. Natl. Acad. Sci. U.S.A. 106, 16102 (2009).
18.Yildiz, B., Youssef, M., Pellenq, R.J.-M., J. Am. Chem. Soc. 133, 2499 (2011).
19.Vandamme, M., Ulm, F.-J., Proc. Natl. Acad. Sci. U.S.A. 106, 10552 (2009).
20.Manzano, H., Dolado, J.S., Ayuelaz, A., J. Am. Ceram. Soc. 92, 897 (2009).
21.Tran, T.T., Herfort, D., Jakobsen, H.J., Skibsted, J., J. Am. Chem. Soc. 131, 14170 (2009).
22.Rawal, A., Smith, B.J., Athens, G.L., Edwards, C.L., Roberts, L., Gupta, V., Chmelka, B.F., J. Am. Chem. Soc. 132, 7321 (2010).
23.Stephan, D., Wistuba, S., J. Eur. Ceram. Soc. 26, 141 (2006).
24.Kim, Y.M., Hong, S.H., J. Am. Ceram. Soc. 87, 900 (2004).
25.Cuberos, A.J.M., De la Torre, A.G., Alvarez-Pinazo, G., Martin-Sedeno, M.C., Schollbach, K., Pollmann, H., Aranda, M.A.G., Environ. Sci. Technol. 44 (17), 6855 (2010).
26.Martin-Sedeno, M.C., Cuberos, A.J.M., De la Torre, A.G., Alvarez-Pinazo, G., Ordonez, L.M., Gateshki, M., Aranda, M.A.G., Cem. Concr. Res. 40 (3), 359 (2010).
27.De la Torre, A.G., Morsli, K., Zahir, M., Aranda, M.A.G., J. Appl. Crystallogr. 40, 999 (2007).
28.Li, G.S., Gartner, G.M., “High-Belite Sulfoaluminate Clinker: Fabrication Process and Binder Preparation,” French Patent Application 04–51586 (27 January 2006).
29.Durgun, E., Manzano, H., Pellenq, R.J.-M., Grossman, J.C., “Understanding and Controlling the Reactivity of the Calcium Silicate Phases from First Principles,” Chem. Mater., in press.
30.Gartner, E.M., Young, J.F., Damidot, D.A., Jawed, I., in Structure and Performance of Cements, Barnes, P., Bensted, J., Eds. (Spon Press, London, ed. 2, 2002), pp. 57103.
31.Bullard, J.W.Jennings, H.J.Livingston, R.A.Nonat, A.Scherer, G.W.Schweitzer, J.S.Scrivener, K.L.Thomas, J.J.Cem. Concr. Res. 41, 1208 (2011).
32.Scrivener, K.L., Nonat, A.. Cem. Concr. Res. 41, 651 (2011).
33.Lootens, D., Hebraud, P., Lecolier, E., Van Damme, H., Oil Gas Sci. Technol. 59, 31 (2004).
34.van Breugel, K., Cem. Concr. Res. 25, 522 (1995).
35.Garboczi, E.J., Bentz, D.P., Snyder, K.A., Martys, N.S., Stutzman, P.E., Ferraris, C.F., Bullard, J.W., An Electronic Monograph: Modeling and Measuring the Structure and Properties of Cement-Based Materials (National Institute of Standards and Technology, Gaithersburg, MD, 2005), concrete.nist.gov/monograph (accessed February 2012).
36.Bullard, J.W., Modell. Simul. Mater. Sci. Eng. 15, 711 (2007).
37.Laio, A., Gervasio, F.L., Rep. Prog. Phys. 71, 126601 (2008).
38.Kushima, A., Eapen, J., Li, J., Yip, S., Zhu, T., Eur. Phys. J. B 82, 271293 (2011).
39.Monasterio, P.R., Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA (2010).
40.Monasterio, P.R., Masero, E., Pellenq, R., Yip, S., paper presented at the 13th International Congress on the Chemistry of Cement (ICCC), Madrid, Spain, 3–8 July 2011.
41.Thomas, J.J., Jennings, H.M., Allen, A.J., Adv. Cem. Based Mater. 7, 119 (1998).
42.Constantinides, G., Ulm, F.-J., J. Mech. Phys. Solids 55, 64 (2007).
43.Garrault-Gauffinet, S., Experimental investigation of calcium silicate hydrate (C-S-H) nucleation. J. Cryst. Growth 200, 565 (1999).
44.Richardson, I.G., Cem. Concr. Res. 29, 1131 (1999).
45.Xu, Z., Viehland, D., Phys. Rev. Lett. 77, 952 (1996).
46.Richardson, I.G., Cem. Concr. Res. 38, 137 (2007).
47.Pellenq, R.J.-M., Van Damme, H., MRS Bull. 29, 319 (2004).
48.Yohanis, Y.G., Norton, B., Energy 27, 77 (2002).
49.Vodak, F., Cerny, R., Drchalova, J., Hoskova, S., Kapickova, O., Michalko, O., Semerak, P., Toman, J., Cem. Concr. Res. 27, 415 (1997).
50.Ji, Q., Pellenq, R.J.-M., Van Vliet, K.J., C-S-H: Water, water everywhere (Research Profile Letter, Concrete Sustainability Hub@MIT, Cambridge, MA, December 2010), web.mit.edu/cshub/news/pdf/12–2010%20CSHub-News-Brief%20(1).pdf (accessed February 2012).
51.McDonald, P.J., Korb, J.-P., Mitchell, J., Monteilhet, L., Phys. Rev. E 72, 011409 (2005).

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed