Skip to main content
×
Home
    • Aa
    • Aa

Silicon-Based Microchemical Systems: Characteristics and Applications

Abstract
Abstract

Microfabrication techniques and scale-up by replication promise to transform classical batch-wise chemical laboratory procedures into integrated systems capable of providing new understanding and control of fundamental processes. Such integrated microchemical systems would enable rapid, continuous discovery and development of new products with the use of fewer resources and the generation of less waste. Additional opportunities exist for on-demand and on-site synthesis, with perhaps the first applications emerging in portable energy sources based on the conversion of hydrocarbons to hydrogen for miniaturized fuel cells.

Microchemical systems can be realized in a wide range of materials including stainless steel, glass, ceramics, silicon, and polymers. The high mechanical strength, excellent temperature characteristics, and good chemical compatibility of silicon combined with the existing fabrication infrastructure for microelectromechanical systems (MEMS) offer advantages in fabricating chemical microsystems that are compatible with strong solvents and operate at elevated temperatures and pressures. Furthermore, silicon-based microsensors for flow, pressure, and temperature can readily be integrated into the systems.

Microsystems for broad chemical applications should be discovery tools that can easily be applied by chemists and materials scientists while also having a convincing “scale-out” to at least small production levels. The interplay of both these capabilities is important in making microreaction technology successful. Perhaps the largest impact of microchemical systems will ultimately be the ability to explore reaction conditions and chemistry at conditions that are otherwise difficult to establish in the laboratory. Case studies are selected to illustrate microfluidic applications in which silicon adds advantages, specifically, integration of physical sensors and infrared spectroscopy, highthroughput experimentation in moisture-sensitive organic synthesis, controlled synthesis of nanoparticles (quantum dots), multiphase and heterogeneous catalytic reactions at elevated temperatures and pressures, and thermal management in the conversion of hydrocarbons to hydrogen.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1 W. Ehrfeld , V. Hessel , and H. Lowe , Microreactors: New Technology for Modern Chemistry (Wiley-VCH, Weinheim, Germany, 2000).

2 T. Schwalbe , V. Autze , M. Hohmann , and W. Stirner , Org. Proc. Res. Dev. 8 (2004) p. 440.

3 V. Hessel , S. Hardt , and H. Lowe , Chemical Micro Process Engineering: Fundamentals, Modelling and Reactions (Wiley-VCH, Weinheim, Germany, 2004).

4 K. Jahnisch , V. Hessel , H. Lowe , and M. Baerns , Ange w. Chem. Int. Ed. 43 (2004) p. 406.

5 P.D.I. Fletcher S.J. Haswell E. Pombo-Villar , B.H. Warrington P. Watts , S.Y.F. Wong and X.L. Zhang Tetrahedron 58 (2002) p. 4735.

6 A.W. Chow AIChE J. 48 (2002) p. 1590.

8 R. Knitter , D. Gohring , P. Risthaus , and J. Hausselt , Microsys. Technol. 7 (2001) p. 85.

9 K.F. Jensen Chem. Eng. Sci. 56 (2001) p. 293.

10 Y.N. Xia and G.M. Whitesides Angew. Chem. Int. Ed. 37 (1998) p. 551.

11 J.C. McDonald and G.M. Whitesides Acc. Chem. Res. 35 (2002) p. 491.

12 A.E. Guber M. Heckele , D. Herrmann , A. Muslija , V. Saile , L. Eichhorn , T. Gietzelt , W. Hoffmann , P.C. Hauser J. Tanyanyiw , A. Gerlach , N. Gottschlich , and G. Knebel , Chem. Eng. J. 101 (2004) p. 447.

13 J.P. Rolland R.M. Van Dam , D.A. Schorzman S.R. Quake and J.M. Desimone J. Amer. Chem. Soc. 126 (2004) p. 2322.

14 R.R. Tummala Proc. IEEE 80 (1992) p. 1924.

15 Q.-S. Pu , R. Luttge , H.J.G.E. Gardeniers and A.V.D. Berg Electrophoresis 24 (2003) p. 162.

16 G.M. Whitesides E. Ostuni , S. Takayama , X.Y. Jiang and D.E. Ingber Annu. Rev. Biomed. Eng. 3 (2001) p. 335.

17 M.A. Unger H.P. Chou T. Thorsen , A. Scherer , and S.R. Quake Science 288 (2000) p. 113.

18 T. Thorsen , S.J. Maerkl and S.R. Quake Science 298 (2002) p. 580.

19 R.J. Jackman T.M. Floyd R. Ghodssi , M.A. Schmidt and K.F. Jensen J. Micromech. Microeng. 11 (2001) p. 263.

21 A.A. Ayon R. Braff , C.C. Lin H.H. Sawin and M.A. Schmidt J. Electrochem. Soc. 146 (1999) p. 339.

23 A. Mehra , X. Zhang , A.A. Ayon I.A. Waitz M.A. Schmidt and C.M. Spadaccini J. Microelectromech. Sys. 9 (2000) p. 517.

24 N. De Mas , A. Günther , M.A. Schmidt and K.F. Jensen Ind. Eng. Chem. Res. 42 (2003) p. 698.

25 L.R. Arana S.B. Schaevitz A.J. Franz M.A. Schmidt and K.F. Jensen J. Microelectromech. Sys. 12 (2003) p. 600.

26 R. Srinivasan , I.-M. Hsing , P.E. Berger K.F. Jensen S.L. Firebaugh M.A. Schmidt M.P. Harold J.J. Lerou and J.F. Ryley AIChE J. 43 (1997) p. 3059.

27 M.W. Losey R.J. Jackman S.L. Firebaugh M.A. Schmidt and K.F. Jensen J. Microelectromech. Sys. 11 (2002) p. 709.

28 J. Drott , K. Lindstrom ., L. Rosengren , and T. Laurell ., J. Micromech. Microeng. 7 (1997) p. 14.

29 C.K. Fredrickson and Z.H. Fan Lab Chip 4 (2004) p. 526.

32 E. Garcia-Egido , V. Spikmans , S.Y.F. Wong and B.H. Warrington Lab Chip 3 (2003) p. 73.

34 T. Kraus , A. Günther , N. De Mas , M.A. Schmidt and K.F. Jensen Exp. Fluids 36 (2004) p. 819.

36 S.L. Firebaugh K.F. Jensen and M.A. Schmidt J. Microelectromech. Syst. 7 (1998) p. 128.

37 T.M. Floyd M.A. Schmidt and K.F. Jensen Ind. Eng. Chem. Res. 44 (2005) p. 2351.

38 D.J. Quiram I.M. Hsing A.J. Franz K.F. Jensen and M.A. Schmidt Chem. Eng. Sci. 55 (2000) p. 3065.

39 A.F. Lopeandia L.L. Cerdo M.T. Clavaguera-Mora , L.R. Arana K.F. Jensen F.J. Munoz and J. Rodriguez-Viejo , Rev. Sci. Instrum. 76 065104/1 (2005).

40 T. Vilkner , D. Janasek , and A. Manz , Anal. Chem. 76 (2004) p. 3373.

41 P.A. Auroux D. Iossifidis , D.R. Reyes and A. Manz, Anal. Chem. 74 (2002) p. 2637.

42 D.R. Reyes D. Iossifidis , P.A. Auroux and A. Manz , Anal. Chem. 74 (2002) p. 2623.

43 H. Lu , M.A. Schmidt and K.F. Jensen Lab Chip 1 (2001) p. 22.

44 S.L. Firebaugh K.F. Jensen and M.A. Schmidt J. Microelectromech. Syst. 10 (2001) p. 232.

45 S.L. Firebaugh K.F. Jensen and M.A. Schmidt J. Appl. Phys. 92 (2002) p. 1555.

46 R. Herzig-Marx , K.T. Queeney R.J. Jackman M.A. Schmidt and K.F. Jensen Anal. Chem. 76 (2004) p. 6476.

47 M. Grabarnick and S. Zamir , Org. Process Res. Dev. 7 (2003) p. 237.

48 P.H. Seeberger and D.B. Werz Nat. Rev. Drug Discov. 4 (2005) p. 751.

50 A.D. Stroock S. K.W. Dertinger A. Ajdari , I. Mezic , H.A. Stone and G.M. Whitesides Science 295 (2002) p. 647.

51 I. Shestopalov , J.D. Tice and R.F. Ismagilov Lab Chip 4 (2004) p. 316.

52 H. Song , J.D. Tice and R.F. Ismagilov Angew. Chem. Int. Ed. 42 (2003) p. 768.

53 A. Gunther , M. Jhunjhunwala , M. Thalmann , M.A. Schmidt and K.F. Jensen Langmuir 21 (2005) p. 1547.

54 A. Gunther , S.A. Khan M. Thalmann , F. Trachsel , and K.F. Jensen Lab Chip 4 (2004) p. 278.

55B. K.H. Yen A. Gunther , M.A. Schmidt K.F. Jensen and M.G. Bawendi Angew. Chem. Int. Ed. 44 (2005) p. 5447.

56 S.K. Ajmera C. Delattre , M.A. Schmidt and K.F. Jensen J. Catal. 209 (2002) p. 401.

57 S.K. Ajmera C. Delattre , M.A. Schmidt and K.F. Jensen Stud. Surf. Sci. Catal. 145 (2003) p. 97.

58 M.W. Losey M.A. Schmidt and K.F. Jensen Ind. Eng. Chem. Res. 40 (2001) p. 2555.

59 J. Kobayashi , Y. Mori , K. Okamoto , R. Akiyama , M. Ueno , T. Kitamori , and S. Kobayashi , Science 304 (2004) p. 1305.

61 R.M. Tiggelaar J.W. Berenschot J.H. De Boer , R.G.P. Sanders J.G.E. Gardeniers R.E. Oosterbroek A. Van Den Berg , and M.C. Elwenspoek Lab Chip 5 (2005) p. 326.

62 Y.H. Ma I.P. Mardilovich and E.E. Engwall Annu. N.Y. Acad. Sci. 984 (2003) p. 346.

65 B.A. Wilhite M.A. Schmidt and K.F. Jensen Ind. Eng. Chem. Res. 43 (2004) p. 7083.

66 H.D. Tong F.C. Gielens J.G.E. Gardeniers H.V. Jansen J.W. Berenschot M.J. De Boer , J.H. De Boer , C.J.M. Van Rijn , and M.C. Elwenspoek J. Microelectromech. Sys. 14 (2005) p. 113.

67 H.D. Tong F.C. Gielens J.G.E. Gardeniers H.V. Jansen C.J.M. Van Rijn , M.C. Elwenspoek and W. Nijdam , Ind. Eng. Chem. Res. 43 (2004) p. 4182.

68 H.D. Tong J.W.E. Berenschot M.J. De Boer , J.G.E. Gardeniers H. Wensink , H.V. Jansen W. Nijdam , M.C. Elwenspock E.C. Gielens and C.J.M. Van Rijn , J. Microelectromech. Sys. 12 (2003) p. 622.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 27 *
Loading metrics...

Abstract views

Total abstract views: 123 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 26th May 2017. This data will be updated every 24 hours.