Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 123
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Cheng, Yan Arinze, Ebuka S. Palmquist, Nathan and Thon, Susanna M. 2016. Advancing colloidal quantum dot photovoltaic technology. Nanophotonics, Vol. 5, Issue. 1,

    Kalyuzhnyy, Nikolay A. Mintairov, Sergey A. Salii, Roman A. Nadtochiy, Alexey M. Payusov, Alexey S. Brunkov, Pavel N. Nevedomsky, Vladimir N. Shvarts, Maxim Z. Martí, Antonio Andreev, Viacheslav M. and Luque, Antonio 2016. Increasing the quantum efficiency of InAs/GaAs QD arrays for solar cells grown by MOVPE without using strain-balance technology. Progress in Photovoltaics: Research and Applications,

    Mustapha, Nazir Fekkai, Zakia and Alkaoud, Ahmed 2016. Enhanced efficiency of organic solar cells based on (MEH-PPV) with graphene and quantum dots. Optik - International Journal for Light and Electron Optics, Vol. 127, Issue. 5, p. 2755.

    Unni, Gautam E. Deepak, T.G. and Sreekumaran Nair, A. 2016. Fabrication of CdSe sensitized SnO2 nanofiber quantum dot solar cells. Materials Science in Semiconductor Processing, Vol. 41, p. 370.

    Unni, Gautam E. Sasi, Soorya and Nair, A. Sreekumaran 2016. Higher open-circuit voltage set by cobalt redox shuttle in SnO2 nanofibers-sensitized CdTe quantum dot solar cells. Journal of Energy Chemistry, Vol. 25, Issue. 3, p. 481.

    Zhang, Anqi Zheng, Gengfeng and Lieber, Charles M. 2016. Nanowires.

    Alharbi, Fahhad H. and Kais, Sabre 2015. Theoretical limits of photovoltaics efficiency and possible improvements by intuitive approaches learned from photosynthesis and quantum coherence. Renewable and Sustainable Energy Reviews, Vol. 43, p. 1073.

    Benyettou, F. Aissat, A. Benamar, M.A. and Vilcot, J.P. 2015. Modeling and Simulation of GaSb/GaAs Quantum Dot for Solar Cell. Energy Procedia, Vol. 74, p. 139.

    Chang, Jin Oshima, Takuya Hachiya, Sojiro Sato, Kouki Toyoda, Taro Katayama, Kenji Hayase, Shuzi and Shen, Qing 2015. Uncovering the charge transfer and recombination mechanism in ZnS-coated PbS quantum dot sensitized solar cells. Solar Energy, Vol. 122, p. 307.

    Chang, Jin Kuga, Yuki Mora-Seró, Iván Toyoda, Taro Ogomi, Yuhei Hayase, Shuzi Bisquert, Juan and Shen, Qing 2015. High reduction of interfacial charge recombination in colloidal quantum dot solar cells by metal oxide surface passivation. Nanoscale, Vol. 7, Issue. 12, p. 5446.

    Guo, Fei Li, Ning Fecher, Frank W. Gasparini, Nicola Quiroz, Cesar Omar Ramirez Bronnbauer, Carina Hou, Yi Radmilović, Vuk V. Radmilović, Velimir R. Spiecker, Erdmann Forberich, Karen and Brabec, Christoph J. 2015. A generic concept to overcome bandgap limitations for designing highly efficient multi-junction photovoltaic cells. Nature Communications, Vol. 6, p. 7730.

    Han, Karam Kim, Yoon Hwa Im, Won Bin and Chung, Woon Jin 2015. Film formation of CdSe quantum dot embedded phosphate glass on an FTO glass substrate. Electronic Materials Letters, Vol. 11, Issue. 4, p. 670.

    Jean, Joel Brown, Patrick R. Jaffe, Robert L. Buonassisi, Tonio and Bulović, Vladimir 2015. Pathways for solar photovoltaics. Energy Environ. Sci., Vol. 8, Issue. 4, p. 1200.

    Kim, Mee Rahn and Ma, Dongling 2015. Quantum-Dot-Based Solar Cells: Recent Advances, Strategies, and Challenges. The Journal of Physical Chemistry Letters, Vol. 6, Issue. 1, p. 85.

    Lissau, Jonas Sandby Nauroozi, Djawed Santoni, Marie-Pierre Ott, Sascha Gardner, James M. and Morandeira, Ana 2015. Photon Upconversion from Chemically Bound Triplet Sensitizers and Emitters on Mesoporous ZrO2: Implications for Solar Energy Conversion. The Journal of Physical Chemistry C, Vol. 119, Issue. 46, p. 25792.

    Pandey, S. K. Ramya, E. Gangwar, J. K. S. Kaur, Palvinder Kumar, Sanjeev Rao, D. N. and Rao, S. M. 2015. Vol. 1675, Issue. , p. 020040.

    Razk, Sara Abdel Allam, Nageh K. and Swillam, Mohamed A. 2015. 2015 32nd National Radio Science Conference (NRSC). p. 371.

    Selopal, Gurpreet Singh Milan, Riccardo Ortolani, Luca Morandi, Vittorio Rizzoli, Rita Sberveglieri, Giorgio Veronese, Giulio Paolo Vomiero, Alberto and Concina, Isabella 2015. Graphene as transparent front contact for dye sensitized solar cells. Solar Energy Materials and Solar Cells, Vol. 135, p. 99.

    Sultana, Sadia and Alam, Shah 2015. 2015 2nd International Conference on Electrical Information and Communication Technologies (EICT). p. 394.

    Urabe, Hiroyuki Kuramoto, Makoto Nakano, Tomohiro Kawaharazuka, Atsushi Makimoto, Toshiki and Horikoshi, Yoshiji 2015. Effects of surface barrier layer in AlGaAs/GaAs solar cells. Journal of Crystal Growth, Vol. 425, p. 330.


Solar Cells Based on Quantum Dots: Multiple Exciton Generation and Intermediate Bands


Semiconductor quantum dots may be used in so-called third-generation solar cells that have the potential to greatly increase the photon conversion efficiency via two effects: (1) the production of multiple excitons from a single photon of sufficient energy and (2) the formation of intermediate bands in the bandgap that use sub-bandgap photons to form separable electron–hole pairs. This is possible because quantization of energy levels in quantum dots produces the following effects: enhanced Auger processes and Coulomb coupling between charge carriers; elimination of the requirement to conserve crystal momentum; slowed hot electron–hole pair (exciton) cooling; multiple exciton generation; and formation of minibands (delocalized electronic states) in quantum dot arrays. For exciton multiplication, very high quantum yields of 300–700% for exciton formation in PbSe, PbS, PbTe, and CdSe quantum dots have been reported at photon energies about 4–8 times the HOMO–LUMO transition energy (quantum dot bandgap), respectively, indicating the formation of 3–7 excitons/photon, depending upon the photon energy. For intermediate-band solar cells, quantum dots are used to create the intermediate bands from the con fined electron states in the conduction band. By means of the intermediate band, it is possible to absorb below-bandgap energy photons. This is predicted to produce solar cells with enhanced photocurrent without voltage degradation.

Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1.W. Shockley and H.J. Queisser , J. Appl. Phys. 32 (1961) p. 510.

2.A.J. Nozik , Annu. Rev. Phys. Chem. 52 (2001) p. 193.

3.R.T. Ross and A.J. Nozik , J. Appl. Phys. 53 (1982) p. 3813.

4.D.S. Boudreaux , F. Williams , and A.J. Nozik , J. Appl. Phys. 51 (1980) p. 2158.

5.P.T. Landsberg , H. Nussbaumer , and G. Willeke , J. Appl. Phys. 74 (1993) p. 1451.

6.S. Kolodinski , J.H. Werner , T. Wittchen , and H.J. Queisser , Appl. Phys. Lett. 63 (1993) p. 2405.

7.R.J. Ellingson , M.C. Beard , J.C. Johnson , P. Yu , O.I. Micic , A.J. Nozik , A. Shabaev , and A.L. Efros , Nano Lett. 5 (2005) p. 865.

8.M.C. Hanna and A.J. Nozik , J. Appl. Phys. 100 074510 (2006).

9.A. Luque and A. Martí , Phys. Rev. Lett. 78 (1997) p. 5014.

10.A. Luque and A. Martí , Prog. Photovoltaics: Res. Appl. 9 (2001) p. 73.

11.J. Bude and K. Hess , J. Appl. Phys. 72 (1992) p. 3554.

12.H.K. Jung , K. Taniguchi , and C. Hamaguchi , J. Appl. Phys. 79 (1996) p. 2473.

13.D. Harrison , R.A. Abram , and S. Brand , J. Appl. Phys. 85 (1999) p. 8186.

14.O. Christensen , J. Appl. Phys. 47 (1976) p. 690.

15.M. Wolf , R. Brendel , J.H. Werner , and H.J. Queisser , J. Appl. Phys. 83 (1998) p. 4213.

16.R. Schaller and V. Klimov , Phys. Rev. Lett. 92 186601 (2004).

17.J.E. Murphy , M.C. Beard , A.G. Norman , S.P. Ahrenkiel , J.C. Johnson , P. Yu , O.I. Micic , R.J. Ellingson , and A.J. Nozik , J. Am. Chem. Soc. 128 (2006) p. 3241.

18.A. Shabaev , Al. L. Efros , and A.J. Nozik , Nano Lett. 6 (2006) p. 2856.

19.R.D. Schaller , M. Sykora , J.M. Pietryga , and V.I. Klimov , Nano Lett. 6 (2006) p. 424.

20.R.D. Schaller , M.A. Petruska , and V.I. Klimov , Appl. Phys. Lett. 87 253102 (2005).

21.R.D. Schaller , V.M. Agranovich , and V.I. Klimov , Nature Phys. 1 (2005) p. 189.

22.A. Franceschetti , J.M. An , and A. Zunger , Nano Lett. 6 (2006) p. 2191.

23.A. Hagfeldt and M. Grätzel , Acc. Chem. Res. 33 (2000) p. 269.

24.J. Moser , P. Bonnote , and M. Grätzel , Coord. Chem. Rev. 171 (1998) p. 245.

25.M. Grätzel , Prog. Photovoltaics 8 (2000) p. 171.

26.A. Zaban , O.I. Micic , B.A. Gregg , and A.J. Nozik , Langmuir 14 (1998) p. 3153.

27.R. Vogel and H. Weller , J. Phys. Chem. 98 (1994) p. 3183.

28.H. Weller , Ber. Bunsen-Ges. Phys. Chem. 95 (1991) p. 1361.

29.D. Liu and P.V. Kamat , J. Phys. Chem. 97 (1993) p. 10769.

30.P. Hoyer and R. Könenkamp , Appl. Phys. Lett. 66 (1995) p. 349.

31.N.C. Greenham , X. Peng , and A.P. Alivisatos , Phys. Rev. B 54 (1996) p. 17628.

32.N.C. Greenham , X. Peng , and A.P. Alivisatos , “A CdSe Nanocrystal/MEH-PPV Polymer Composite Photovoltaic” in Future Generation Photovoltaic Technologies: First NREL Conf., edited by R. McConnell (AIP, 1997) p. 295.

33.W.U. Huynh , X. Peng , and P. Alivisatos , Adv. Mater. 11 (1999) p. 923.

34.A. Luque , A. Martí , and L. Cuadra , IEEE Trans. Electron Dev. 50 (2003) p. 447.

35.A. Luque , A. Martí , and L. Cuadra , Physica E 14 (2002) p. 107.

36.A. Luque , A. Martí , and L. Cuadra , IEEE Trans. Electron Dev. 48 (2001) p. 2118.

37.A. Luque , A. Martí , E. Antolín , and C. Tablero , Physica B 382 (2006) p. 320.

38.A. Martí , L. Cuadra , and A. Luque , in Proc. 28th IEEE Photovoltaics Specialists Conf. (IEEE, Piscataway, NJ, 2000) p. 940.

39.N.F. Mott , Rev. Mod. Phys. 40 (1968) p. 677.

42.K. Mukai and M. Sugawara , in Self-Assembled InGaAs/GaAs Quantum Dots, Semiconductors and Semimetals, Vol. 60, edited by M. Sugawara (Academic Press, San Diego, 1999) p. 209.

43.A. Martí , L. Cuadra , and A. Luque , IEEE Trans. Electron Dev. 48 (2001) p. 2394.

44.Y. Nakata , Y. Sugiyama , and M. Sugawara , in Self-Assembled InGaAs/GaAs Quantum Dots, Semiconductors and Semimetals, Vol. 60, edited by M. Sugawara (Academic Press, San Diego, 1999) p. 117.

45.A. Luque , A. Martí , N. López , E. Antolín , E. Cánovas , C. Stanley , C. Farmer , L.J. Caballero , L. Cuadra , and J.L. Balenzategui , Appl. Phys. Lett. 87 083505 (2005).

46.A. Luque , A. Martí , N. López , E. Antolín , E. Cánovas , C.R. Stanley , C. Farmer , and P. Díaz , J. Appl. Phys. 99 094503 (2006).

47.A. Luque , A. Martí , C. Stanley , N. López , L. Cuadra , D. Zhou , and A. McKee , J. Appl. Phys. 96 (2004) p. 903.

48.A.J. Nozik , Physica E 14 (2002) p. 115.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *