Skip to main content
×
Home
    • Aa
    • Aa

Solar Cells Based on Quantum Dots: Multiple Exciton Generation and Intermediate Bands

Abstract
Abstract

Semiconductor quantum dots may be used in so-called third-generation solar cells that have the potential to greatly increase the photon conversion efficiency via two effects: (1) the production of multiple excitons from a single photon of sufficient energy and (2) the formation of intermediate bands in the bandgap that use sub-bandgap photons to form separable electron–hole pairs. This is possible because quantization of energy levels in quantum dots produces the following effects: enhanced Auger processes and Coulomb coupling between charge carriers; elimination of the requirement to conserve crystal momentum; slowed hot electron–hole pair (exciton) cooling; multiple exciton generation; and formation of minibands (delocalized electronic states) in quantum dot arrays. For exciton multiplication, very high quantum yields of 300–700% for exciton formation in PbSe, PbS, PbTe, and CdSe quantum dots have been reported at photon energies about 4–8 times the HOMO–LUMO transition energy (quantum dot bandgap), respectively, indicating the formation of 3–7 excitons/photon, depending upon the photon energy. For intermediate-band solar cells, quantum dots are used to create the intermediate bands from the con fined electron states in the conduction band. By means of the intermediate band, it is possible to absorb below-bandgap energy photons. This is predicted to produce solar cells with enhanced photocurrent without voltage degradation.

Copyright
References
Hide All
1.Shockley W. and Queisser H.J., J. Appl. Phys. 32 (1961) p. 510.
2.Nozik A.J., Annu. Rev. Phys. Chem. 52 (2001) p. 193.
3.Ross R.T. and Nozik A.J., J. Appl. Phys. 53 (1982) p. 3813.
4.Boudreaux D.S., Williams F., and Nozik A.J., J. Appl. Phys. 51 (1980) p. 2158.
5.Landsberg P.T., Nussbaumer H., and Willeke G., J. Appl. Phys. 74 (1993) p. 1451.
6.Kolodinski S., Werner J.H., Wittchen T., and Queisser H.J., Appl. Phys. Lett. 63 (1993) p. 2405.
7.Ellingson R.J., Beard M.C., Johnson J.C., Yu P., Micic O.I., Nozik A.J., Shabaev A., and Efros A.L., Nano Lett. 5 (2005) p. 865.
8.Hanna M.C. and Nozik A.J., J. Appl. Phys. 100 074510 (2006).
9.Luque A. and Martí A., Phys. Rev. Lett. 78 (1997) p. 5014.
10.Luque A. and Martí A., Prog. Photovoltaics: Res. Appl. 9 (2001) p. 73.
11.Bude J. and Hess K., J. Appl. Phys. 72 (1992) p. 3554.
12.Jung H.K., Taniguchi K., and Hamaguchi C., J. Appl. Phys. 79 (1996) p. 2473.
13.Harrison D., Abram R.A., and Brand S., J. Appl. Phys. 85 (1999) p. 8186.
14.Christensen O., J. Appl. Phys. 47 (1976) p. 690.
15.Wolf M., Brendel R., Werner J.H., and Queisser H.J., J. Appl. Phys. 83 (1998) p. 4213.
16.Schaller R. and Klimov V., Phys. Rev. Lett. 92 186601 (2004).
17.Murphy J.E., Beard M.C., Norman A.G., Ahrenkiel S.P., Johnson J.C., Yu P., Micic O.I., Ellingson R.J., and Nozik A.J., J. Am. Chem. Soc. 128 (2006) p. 3241.
18.Shabaev A., Efros Al. L., and Nozik A.J., Nano Lett. 6 (2006) p. 2856.
19.Schaller R.D., Sykora M., Pietryga J.M., and Klimov V.I., Nano Lett. 6 (2006) p. 424.
20.Schaller R.D., Petruska M.A., and Klimov V.I., Appl. Phys. Lett. 87 253102 (2005).
21.Schaller R.D., Agranovich V.M., and Klimov V.I., Nature Phys. 1 (2005) p. 189.
22.Franceschetti A., An J.M., and Zunger A., Nano Lett. 6 (2006) p. 2191.
23.Hagfeldt A. and Grätzel M., Acc. Chem. Res. 33 (2000) p. 269.
24.Moser J., Bonnote P., and Grätzel M., Coord. Chem. Rev. 171 (1998) p. 245.
25.Grätzel M., Prog. Photovoltaics 8 (2000) p. 171.
26.Zaban A., Micic O.I., Gregg B.A., and Nozik A.J., Langmuir 14 (1998) p. 3153.
27.Vogel R. and Weller H., J. Phys. Chem. 98 (1994) p. 3183.
28.Weller H., Ber. Bunsen-Ges. Phys. Chem. 95 (1991) p. 1361.
29.Liu D. and Kamat P.V., J. Phys. Chem. 97 (1993) p. 10769.
30.Hoyer P. and Könenkamp R., Appl. Phys. Lett. 66 (1995) p. 349.
31.Greenham N.C., Peng X., and Alivisatos A.P., Phys. Rev. B 54 (1996) p. 17628.
32.Greenham N.C., Peng X., and Alivisatos A.P., “A CdSe Nanocrystal/MEH-PPV Polymer Composite Photovoltaic” in Future Generation Photovoltaic Technologies: First NREL Conf., edited by McConnell R. (AIP, 1997) p. 295.
33.Huynh W.U., Peng X., and Alivisatos P., Adv. Mater. 11 (1999) p. 923.
34.Luque A., Martí A., and Cuadra L., IEEE Trans. Electron Dev. 50 (2003) p. 447.
35.Luque A., Martí A., and Cuadra L., Physica E 14 (2002) p. 107.
36.Luque A., Martí A., and Cuadra L., IEEE Trans. Electron Dev. 48 (2001) p. 2118.
37.Luque A., Martí A., Antolín E., and Tablero C., Physica B 382 (2006) p. 320.
38.Martí A., Cuadra L., and Luque A., in Proc. 28th IEEE Photovoltaics Specialists Conf. (IEEE, Piscataway, NJ, 2000) p. 940.
39.Mott N.F., Rev. Mod. Phys. 40 (1968) p. 677.
40.Nozik A.J., in The Next Generation Photovoltaics: High Efficiency through Full Spectrum Utilization, edited by Martí A., Luque A. (Institute of Physics, Bristol, UK, 2003) p. 196.
41.Woggon U., in Optical Properties of Semiconductor Quantum Dots, Springer Tracts in Modern Physics (Springer-Verlag, Heidelberg, 1996) p. 115.
42.Mukai K. and Sugawara M., in Self-Assembled InGaAs/GaAs Quantum Dots, Semiconductors and Semimetals, Vol. 60, edited by Sugawara M. (Academic Press, San Diego, 1999) p. 209.
43.Martí A., Cuadra L., and Luque A., IEEE Trans. Electron Dev. 48 (2001) p. 2394.
44.Nakata Y., Sugiyama Y., and Sugawara M., in Self-Assembled InGaAs/GaAs Quantum Dots, Semiconductors and Semimetals, Vol. 60, edited by Sugawara M. (Academic Press, San Diego, 1999) p. 117.
45.Luque A., Martí A., López N., Antolín E., Cánovas E., Stanley C., Farmer C., Caballero L.J., Cuadra L., and Balenzategui J.L., Appl. Phys. Lett. 87 083505 (2005).
46.Luque A., Martí A., López N., Antolín E., Cánovas E., Stanley C.R., Farmer C., and Díaz P., J. Appl. Phys. 99 094503 (2006).
47.Luque A., Martí A., Stanley C., López N., Cuadra L., Zhou D., and McKee A., J. Appl. Phys. 96 (2004) p. 903.
48.Nozik A.J., Physica E 14 (2002) p. 115.
49.Ellingson R.J., Blackburn J.L., Beard M., Micic O.I., Yu P., Murphy J., and Nozik A.J., in Proc. ECS Meet., edited by Lian T., Murakoshi K., and Rumbles G. (San Antonio, 2004).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 3
Total number of PDF views: 154 *
Loading metrics...

Abstract views

Total abstract views: 494 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th October 2017. This data will be updated every 24 hours.