Skip to main content
×
×
Home

Structure and Mechanical Behavior of Bulk Nanocrystalline Materials

  • J.R. Weertman, D. Farkas, K. Hemker, H. Kung, M. Mayo, R. Mitra and H. Van Swygenhoven...
Extract

The reduction of grain size to the nanometer range (˜2-100 nm) has led to many interesting materials properties, including those involving mechanical behavior. In the case of metals, the Hall-Petch equation, which relates the yield stress to the inverse square root of the grain size, predicts great increases in strength with grain refinement. On the other hand, theory indicates that the high volume fraction of interfacial regions leads to increased deformation by grain-boundary sliding in metals with grain size in the low end of the nanocrystalline range. Nanocrystalline ceramics also have desirable properties. Chief among these are lower sintering temperatures and enhanced strain to failure. These two properties acting in combination allow for some unique applications, such as low-temperature diffusion bonding (the direct joining of ceramics to each other using moderate temperatures and pressures). Mechanical properties sometimes are affected by the fact that ceramics in a fine-grained form are stable in a different (usually higher pressure) phase than that which is considered “normal” for the ceramic. To the extent that the mechanical properties of a ceramic are dependent on its crystal-lographic structure, these differences will become evident at the smaller size scales.

It is uncertain how deformation takes place in very fine-grained nanocrystalline materials. It has been recognized for some time that the Hall-Petch relationship, which usually is explained on the basis of dislocation pileups at grain boundaries, must break down at grain sizes such that a grain cannot support a pileup. Even some of the basic assumptions of dislocation theory may no longer be appropriate in this size regime. Recently considerable progress has been made in simulating the behavior of extremely fine-grained metals under stress using molecular-dynamics techniques. Molecular-dynamics (MD) simulations of deformation in nanophase Ni and Cu were carried out in the temperature range of 300–500 K, at constant applied uniaxial tensile stresses between 0.05 GPa and 1.5 GPa, on samples with average grain sizes ranging from 3.4 nm to 12 nm.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Structure and Mechanical Behavior of Bulk Nanocrystalline Materials
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Structure and Mechanical Behavior of Bulk Nanocrystalline Materials
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Structure and Mechanical Behavior of Bulk Nanocrystalline Materials
      Available formats
      ×
Copyright
References
Hide All
1.Hall, E.O., Proc. Phys. Soc. London, Sect. B 64 (1951) p. 747.
2.Petch, N.J., J. Iron Steel Inst. 174 (1953) p. 25.
3.Coble, R.L., J. Appl. Phys. 34 (1963) p. 1679.
4.Garvie, R.C, J. Phys. Chem. 69 (1965) p. 1238.
5.Winterer, W., Nitsche, R., Redfern, S.A.T., Schmahl, W.W., and Halm, H., Nanostruc. Mater. 5 (1995) p. 679.
6.Yamaguchi, O., Shirai, M., and Yoshinaka, M., J. Am. Ceram. Soc. 71 (1988) p. C510.
7.Lee, H-Y., Riehemann, W., and Mordike, B.L., J. Eur. Ceram. Soc. 10 (1992) p. 245.
8.Skandan, G., Nanostruc. Mater. 5 (1995) p. 111.
9.Skandan, G., Foster, C.M., Frase, H., Ali, M.N., Parker, J.C., and Hahn, H., Nanostruc. Mater. 1 (1992) p. 313.
10.Nieh, T.G. and Wadsworth, J., Scripta Metall. Mater. 25 (1991) p. 955.
11.Scattergood, R.O. and Koch, C.C., Scripta Metall. Mater. 27 (1992)p. 1195.
12.Swygenhoven, H. Van, Spaczer, M., and Caro, A., Nanostruc. Mater. 10 (1998) p. 819.
13.Swygenhoven, H. Van, Spaczer, M., and Caro, A., in Microscopic Simulation of Interfacial Phenomena in Solids and Liquids, edited by Phillpot, S.R., Bristowe, P.D., Stroud, D.G., and Smith, J.R. (Mater. Res. Soc. Symp. Proc. 492, Warrendale, PA, 1998) p. 29.
14.Swygenhoven, H. Van, Spaczer, M., Farkas, D., and Caro, A., Nanostruc. Mater. in press.
15.Swygenhoven, H. Van and Caro, A., Appl. Phys. Lett. 71 (1997) p. 12.
16.Swygenhoven, H. Van and Caro, A., (unpublished manuscript).
17.Schiøtz, J., DiTolla, F.D., and Jacobsen, K.W., Nature 391 (1998) p. 561.
18.Schiøtz, J., Vegge, T., DiTolla, F.D., and Jacobsen, K.W., in Modelling of Structure and Mechanics of Materials from Microscale to Product, edited by Carstensen, J.V., Letters, T., Lorentzen, T., Pedersen, O.B., Sørensen, B.F., and Winther, G. (RISØ National Laboratory, Roskilde, Denmark, 1998) p. 133.
19.Cleri, F. and Rosato, V., Phys. Rev. B 48 (1993) p. 48.
20.Parrinello, M. and Rahman, A., J. Appl. Phys. 52 (1981) p. 12.
21.Sanders, P.G., Rittner, M., Kiedaisch, E., Weertman, J.R., Kung, H., and Lu, Y-C., Nanostruc. Mater. 9 (1997) p. 433.
22.Mishin, O.V., Gertsman, V.J., Valiev, R.Z., and Gottstein, G., Scripta Mater. 35 (1996) p. 873.
23.Voronoi, G.Z., Reine Angew. Math. 134 (1908) p. 199.
24.Honeycutt, D.J. and Anderson, H.C., J. Phys. Chem. 91 (1987) p. 4950.
25.Swygenhoven, H. Van, Spaczer, M., and Caro, A. (unpublished manuscript).
26.Gleiter, H., Prog. Mater. Sci. 32 (1989) p. 223.
27.Sanders, P.G., Eastman, J.A., and Weertman, J.R., Acta Mater. 46 (1998) p. 4195.
28.Agnew, S.R., Elliott, B.R., Youngdahl, C.J., Hemker, K.J., and Weertman, J.R., in Modelling of Structure and Mechanics of Materials from Microscale to Product, edited by Carstensen, J.V., Letters, T., Lorentzen, T., Pedersen, O.B., Sørensen, B.F., and Winther, G. (RISØ National Laboratory, Roskilde, Denmark, 1998) p. 1.
29.Sanders, P.G., Eastman, J.A., and Weertman, J.R., Acta Mater. 45 (1997) p. 4019.
30.Sanders, P.G., Youngdahl, C.J., and Weertman, J.R., Mater. Sci. Eng. A 234-236 (1997) p. 77.
31.Warren, B.E., X-ray Diffraction (Dover, New York, 1990).
32.Siegel, R.W., Ramasamy, S., Hahn, H., Zonghuan, Z., and Ting, L., J. Mater. Res. 3 (1988) p. 1367.
33.Hahn, H., Logas, J., and Averback, R.S., J. Mater. Res. 5 (1990) p. 609.
34.Pechenik, A., Piermarini, G.J., and Danforth, S.C., J. Am. Ceram. Soc. 75 (1992) p. 3283.
35.Andrievski, R.A., Int. J. Powder Metall. 30 (1994) p. 59.
36.Mayo, M.J., Siegel, R.W., Narayanasamy, A., and Nix, W.D., J. Mater. Res. 5 (1990) p. 1073.
37.Mayo, M.J., Siegel, R.W., Liao, Y.X., and Nix, W.D., J. Mater. Res. 7 (1992) p. 973.
38.Höfler, H.J., Hahn, H., and Averback, R.S., Defect Diff. Forum 75 (1991) p. 195.
39.Korn, D., Morsch, A., Birringer, R., Arnold, W., and Gleiter, H., J. de Phys. C5 (1988) p. 769.
40.Nieman, G.W., Weertman, J.R., and Siegel, R.W., J. Mater. Res. 6 (1991) p. 1012.
41.Shen, T.D., Koch, C.C., Tsui, T.Y., and Pharr, G.M., J. Mater. Res. 10 (1995) p. 2892.
42.Sharpe, W.N. Jr. and Fowler, R.O., ASTM STP 1204 (American Society for Testing and Materials, Philidelphia, 1993) p. 386.
43.Yan, M.F. and Rhodes, W.W., Mater. Sci. Eng. 61 (1983) p. 59.
44.Hague, D.C., M.S. thesis, The Pennsylvania State University, 1992.
45.Barringer, E.A., Brook, R., and Bowen, H.K., in Sintering and Heterogeneous Catalysis, edited by Kuczynski, G.C., Miller, A.E., and Sargent, G.A. (Plenum Press, New York, 1984) p. 1.
46.Nieh, T.G., CMcNally, M., and Wadsworth, J., J. Met. (1989) p. 31.
47.Maehara, Y. and Langdon, T.G., J. Mater. Sci. 25 (1990) p. 2275.
48.Nieh, T.G., Wadsworth, J.,and Wakai, F., Int. Mater. Rev. 36 (1991) p. 146.
49.Mayo, M.J., Nanostruc. Mater. 9 (1997) p. 717.
50.Çiftçioglu, M. and Mayo, M.J., in Superplasticity in Metals, Ceramics, and Intermetallics edited by Mayo, M.J., Kobayashi, M., and Wadsworth, J. (Mater. Res. Soc. Symp. Proc. 196, Pittsburgh, 1990) p. 77.
51.Hahn, H. and Averback, R.S., J. Am. Ceram. Soc. 74 (1991) p. 2918.
52.Carry, C. and Mocellin, A., Ceram. Int. 13 (1987) p. 89.
53.Prabhu, G.B. and Bourell, D.L., Scripta Metall. Mater. 33 (1995) p. 761.
54.Mayo, M.J., in Superplasticity in Advanced Materials, edited by Hori, S., Tokizane, M., and Furushiro, N. (Japan Society for Research on Superplasticity, Osaka, 1991) p. 541.
55.Cross, T.H. and Mayo, M.J., Nanostruc. Mater. 3 (1994) p. 163.
56.Ferkel, H. and Riehemann, W., Nanostruc. Mater. 7 (1996) p. 835.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed