Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-29T06:46:10.263Z Has data issue: false hasContentIssue false

Structure of Glasses of Geological Interest: Applying Spectroscopic Techniques

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Glasses are a minor fraction of Earth materials. However, all igneous processes within the Earth involve a melt phase (magma), and our understanding of the physical and chemical features of these processes is contingent upon an adequate understanding of the melt phase itself. In particular, we wish to relate the behavior of such melts to their composition and structure in the range of physical and chemical conditions in which they occur. The physical conditions of many of these processes are particularly difficult to reproduce in the laboratory, and the ability to predict behavior under such conditions is the goal. From a geological viewpoint, the primary interest is in silicate melts because of the composition of the Earth's lithosphere and mantle. There are significant experimental difficulties in looking at the behavior of silicate melts, so much work has focused on glasses as melt analogues since spectroscopic data on silicate glasses and melts (Figure 1) are similar.

Silicate glasses are also of considerable industrial interest, and early work in the geological field borrowed heavily from materials science. However, the thrust to understand natural magmas led geologically based work into more complex chemical systems (e.g., hydrous alkali-alkaline-earth-aluminosilicates) and their behavior at high pressures.

The structure of glasses is a complex issue, and many different experimental techniques are needed to resolve the details of their structure. Here I will focus on the following techniques: IR (infrared), Raman, Mössbauer, EXAFS (extended x-ray absorption fine structure) and XANES (x-ray absorption near-edge spectroscopy) spectroscopies.

Type
Earth Materials
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Sharma, S.K., Virgo, D., and Mysen, B.O., Carnegie Inst. Wash. Year Book 77 (1978) p. 649.Google Scholar
2.Seifert, F.A., Mysen, B.O., and Virgo, D., Geochim. Cosmochim. Acta 45 p. 1879.CrossRefGoogle Scholar
3.Spectroscopic Methods in Mineralogy and Geology, Reviews in Mineralogy, Vol. 18, edited by Hawthorne, F.C. (Mineralogical Society of America, 1988).CrossRefGoogle Scholar
4.Burdett, J.K., Lee, S., and Sha, W.C., Croatica Chem. Acta 57 (1984) p. 1193.Google Scholar
5.Burdett, J.K. and Lee, S., J. Am. Chem. Soc. 107 (1985) p. 3050.CrossRefGoogle Scholar
6.Zachariasen, W.H., J. Am. Ceram. Soc. 54 (1932) p. 3841.Google Scholar
7.Warren, B.E., Phys. Rev. 45 (1934) p. 657.CrossRefGoogle Scholar
8.Stebbins, J.F. and McMillan, P.F., Am. Mineral. 74 (1989) p. 965.Google Scholar
9.Xue, X., Stebbins, J.F., Kanzaki, M., McMillan, P.F., and Poe, B., Am. Mineral. 76 (1991) p. 8.Google Scholar
10.Williams, Q. and Jeanloz, R., Science 239 (1988) p. 902.CrossRefGoogle Scholar
11.Stixrude, L., Oshagan, A., and Bukowinski, M.S.T., Am. Mineral. 76 (1991) p. 1761.Google Scholar
12.Stebbins, J.F., MRS Bulletin (this issue).Google Scholar
13.McMillan, P.F., Am. Mineral. 69 (1984) p. 622.Google Scholar
14.Mysen, B.O., Virgo, D., and Seifert, F.A., Am. Mineral. 70 (1985) p. 88.Google Scholar
15.Seifert, F.A., Mysen, B.O., and Virgo, D., Am. Mineral. 67 (1982) p. 696.Google Scholar
16.Mysen, B.O., Virgo, D., and Kushiro, I., Am. Mineral. 66 (1981) p. 678.Google Scholar
17.McMillan, P.F., Piriou, B., and Navrotsky, A., Geochim. Cosmochim. Acta 46 (1982) p. 2021.CrossRefGoogle Scholar
18.Mysen, B.O., Earth Sci. Rev. 27 (1990) p. 281.CrossRefGoogle Scholar
19.Mysen, B.O., Am. Mineral. 75 (1990) p. 120.Google Scholar
20.Merzbacher, C.I. and White, W.B., J. Non-Cryst. Solids 130 (1991) p. 18.CrossRefGoogle Scholar
21.Calas, G., Brown, G.E. Jr., Waychunas, G.A., and Petiau, J., Phys. Chem. Minerals 15 (1987) p. 19.CrossRefGoogle Scholar
22.Calas, G. and Petiau, J., Bull. Mineral 106 (1983) p. 33.Google Scholar
23.McKeown, D.A., Waychunas, G.A., and Brown, G.E. Jr., J. Non-Cryst. Solids 74 (1985) p. 349.CrossRefGoogle Scholar
24.McKeown, D.A., Waychunas, G.A., and Brown, G.E. Jr., J. Non-Cryst. Solids 74 (1985) p. 325.CrossRefGoogle Scholar
25.Mysen, B.O. and Virgo, D., Phys. Chem. Minerals 12 (1985) p. 191.CrossRefGoogle Scholar
26.Dyar, M.D., Am. Mineral. 70 (1985) p. 304.Google Scholar
27.Virgo, D. and Mysen, B.O., Phys. Chem. Minerals 12 (1985) p. 65.CrossRefGoogle Scholar
28.Mysen, B.O., Virgo, D., Neumann, E-R., and Seifert, F.A., Am. Mineral. 70 (1985) p. 317.Google Scholar
29.Mysen, B.O. and Virgo, D., Am. J. Sci. 278 (1978) p. 1307.CrossRefGoogle Scholar
30.Mysen, B.O., Seifert, F.A., and Virgo, D., Am. Mineral. 65 (1980) p. 867.Google Scholar
31.Fleet, M.E., Herzberg, C.T., Henderson, G.S., Crozier, E.D., Osborne, M.D., and Scarfe, C.M., Geochim. Cosmochim. Acta 48 (1984) p. 1455.CrossRefGoogle Scholar
32.Brown, G.E. Jr., Waychunas, G.A., Ponander, C.W., Jackson, W.E., and McKeown, D.A., J. Physique C8 (1986) p. 661.Google Scholar
33.Jackson, W.E., Cooney, T., Ponander, C.W., Brown, G.E. Jr., and Waychunas, G.A., NATO Adv. Study Inst., Physical Properties and Thermodynamic Behaviour of Minerals, abstract (1987) p. 42.Google Scholar
34.Mysen, B.O., Virgo, D., and Seifert, F.A., Am. Mineral. 69 (1984) p. 834.Google Scholar
35.Williams, Q., McMillan, P.F., and Cooney, T.F., Phys. Chem. Minerals 16 (1989) p. 352.CrossRefGoogle Scholar
36.Matsui, Y., Kawamura, K., and Syono, Y., in High Pressure Research in Geophysics, edited by Akimoto, S. and Manghnani, M.H., (Centre for Academic Publications, Tokyo, 1982) p. 511.CrossRefGoogle Scholar
37.Yin, C.D., Okuno, M., Morikawa, H., and Marumo, F., J. Non-Cryst. Solids 55 (1983) p. [131.CrossRefGoogle Scholar
38.Binsted, N., Greaves, G.N., and Henderson, C.M.B., Contrib. Mineral. Petrol. 89 (1985) p. 103.CrossRefGoogle Scholar
39.Ponader, C.W. and Brown, G.E. Jr., Geochim. Cosmochim. Acta 53 (1989) p. 2893.CrossRefGoogle Scholar
40.Larson, E.M., Ellison, A.J.G., Lytle, F.W., Navrotsky, A., Greegor, R.B., and Wong, J., J. Non-Cryst. Solids 130 (1991) p. 260.CrossRefGoogle Scholar
41.Ponander, C.W. and Brown, G.E. Jr., Geochim. Cosmochim. Acta 53 (1989) p. 2905.CrossRefGoogle Scholar
42.Dumas, T. and Petiau, J., J. Non-Cryst. Solids 81 (1986) p. 201.CrossRefGoogle Scholar
43.Ramos, A., Petiau, J., and Gandais, M., J. Physique C8 (1985) p. 491.Google Scholar
44.Yarker, C.A., Johnson, P.A.V., Wright, A.C., Wong, J., Greegor, R.B., Lytle, F.W., and Sinclair, R.N., J. Non-Cryst. Solids 79 (1986) p. 117.CrossRefGoogle Scholar
45.Griscom, D.L., MRS Bulletin XII (5) (1987) p. 20.CrossRefGoogle Scholar
46.Gaskell, P.H., Eckersley, M.C., Barnes, A.C., and Chieux, P., Nature 350 (1991) p. 675.CrossRefGoogle Scholar
47.McMillan, P.F. and Remmele, R.L. Jr., Am. Mineral. 71 (1986) p. 772.Google Scholar
48.Newman, S., Stolper, E.M., and Epstein, S., Am. Mineral. 71 (1986) p. 1527.Google Scholar
49.Stolper, E., Am. Mineral. 74 (1989) p. 1247.Google Scholar
50.Silver, L.A., Ihinger, P.D., and Stolper, E., Contrib. Mineral. Petrol. 104 (1990) p. 142.CrossRefGoogle Scholar
51.Knight, C.T.G., Kirkpatrick, R.J., and Oldfield, E., J. Non-Cryst. Solids 116 (1990) p. 140.CrossRefGoogle Scholar
52.Elliot, S.R., Physics of Amorphous Solids, 2nd ed., (Longman, London, 1990).Google Scholar
53.Greegor, R.B., Lytle, F.W., Sandstrom, D.R., Wong, J., and Schultz, P., J. Non-Cryst. Solids 55 (1983) p. 27.CrossRefGoogle Scholar