Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 241
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Shulaker, Max Marcel Wei, Hai Mitra, Subhasish and Wong, H.-S. Philip 2017. Carbon Nanotubes for Interconnects.


    Akhavan-Zanjani, Hossein Saffar-Avval, Majid Mansourkiaei, Mohsen Sharif, Farhad and Ahadi, Mohammad 2016. Experimental investigation of laminar forced convective heat transfer of Graphene–water nanofluid inside a circular tube. International Journal of Thermal Sciences, Vol. 100, p. 316.


    Al Taleb, Amjad and Farías, Daniel 2016. Phonon dynamics of graphene on metals. Journal of Physics: Condensed Matter, Vol. 28, Issue. 10, p. 103005.


    Alisultanov, Z.Z. and Reis, M.S. 2016. Magneto-oscillations on specific heat of graphene monolayer. Physics Letters A, Vol. 380, Issue. 3, p. 470.


    Beechem, Thomas E. Shaffer, Ryan A. Nogan, John Ohta, Taisuke Hamilton, Allister B. McDonald, Anthony E. and Howell, Stephen W. 2016. Self-Heating and Failure in Scalable Graphene Devices. Scientific Reports, Vol. 6, p. 26457.


    Benítez, J. L. Hernández-cordero, Juan Muhl, S. and Mendoza, D. 2016. Few layers graphene as thermally activated optical modulator in the visible-near IR spectral range. Optics Letters, Vol. 41, Issue. 1, p. 167.


    Cao, Bing-Yang Yao, Wen-Jun and Ye, Zhen-Qiang 2016. Networked nanoconstrictions: An effective route to tuning the thermal transport properties of graphene. Carbon, Vol. 96, p. 711.


    Çelik, Y. Çelik, A. Flahaut, E. and Suvaci, E. 2016. Anisotropic mechanical and functional properties of graphene-based alumina matrix nanocomposites. Journal of the European Ceramic Society, Vol. 36, Issue. 8, p. 2075.


    Choi, Seon Jae Kim, Bum-Kyu Lee, Tae-Ho Kim, Yun Ho Li, Zuanyi Pop, Eric Kim, Ju-Jin Song, Jong Hyun and Bae, Myung-Ho 2016. Electrical and Thermoelectric Transport by Variable Range Hopping in Thin Black Phosphorus Devices. Nano Letters, Vol. 16, Issue. 7, p. 3969.


    D'Souza, Ransell and Mukherjee, Sugata 2016. Thermoelectric transport in graphene/h-BN/graphene heterostructures: A computational study. Physica E: Low-dimensional Systems and Nanostructures, Vol. 81, p. 96.


    da Silva, Carlos Saiz, Fernan Romero, David A. and Amon, Cristina H. 2016. Coherent phonon transport in short-period two-dimensional superlattices of graphene and boron nitride. Physical Review B, Vol. 93, Issue. 12,


    Demetriou, Giorgos Bookey, Henry T. Biancalana, Fabio Abraham, Eitan Wang, Yu Ji, Wei and Kar, Ajoy K. 2016. Nonlinear optical properties of multilayer graphene in the infrared. Optics Express, Vol. 24, Issue. 12, p. 13033.


    Di Bartolomeo, Antonio 2016. Graphene Schottky diodes: An experimental review of the rectifying graphene/semiconductor heterojunction. Physics Reports, Vol. 606, p. 1.


    Dollekamp, Edwin Bampoulis, Pantelis Poelsema, Bene Zandvliet, Harold J. W. and Kooij, E. Stefan 2016. Electrochemically Induced Nanobubbles between Graphene and Mica. Langmuir, Vol. 32, Issue. 26, p. 6582.


    Fraile, Alberto Koukaras, Emmanuel N. Papagelis, Konstantinos Lazarides, Nikos and Tsironis, G.P. 2016. Long-lived discrete breathers in free-standing graphene. Chaos, Solitons & Fractals, Vol. 87, p. 262.


    Gao, Yuan Liu, Qingchang and Xu, Baoxing 2016. Lattice Mismatch Dominant Yet Mechanically Tunable Thermal Conductivity in Bilayer Heterostructures. ACS Nano, Vol. 10, Issue. 5, p. 5431.


    Gao, Yuan Yang, Weizhu and Xu, Baoxing 2016. Unusual thermal conductivity behavior of serpentine graphene nanoribbons under tensile strain. Carbon, Vol. 96, p. 513.


    Hu, Zengrong Saei, Mojib Tong, Guoquan Lin, Dong Nian, Qiong Hu, Yaowu Jin, Shengyu Xu, Jiale and Cheng, Gary J. 2016. Numerical simulation of temperature field distribution for laser sintering graphene reinforced nickel matrix nanocomposites. Journal of Alloys and Compounds, Vol. 688, p. 438.


    Jomehpour Zaveh, S. Roknabadi, M.R. Morshedloo, T. and Modarresi, M. 2016. Electronic and thermal properties of germanene and stanene by first-principles calculations. Superlattices and Microstructures, Vol. 91, p. 383.


    Kim, Choong Sun Hong, Seul Ki Lee, Jung-Min Kang, Dong-Soo Cho, Byung Jin and Choi, Jung-Woo 2016. Free-Standing Graphene Thermophone on a Polymer-Mesh Substrate. Small, Vol. 12, Issue. 2, p. 185.


    ×

Thermal properties of graphene: Fundamentals and applications

  • Eric Pop (a1), Vikas Varshney (a2) and Ajit K. Roy (a3)
  • DOI: http://dx.doi.org/10.1557/mrs.2012.203
  • Published online: 23 November 2012
Abstract
Abstract

Graphene is a two-dimensional (2D) material with over 100-fold anisotropy of heat flow between the in-plane and out-of-plane directions. High in-plane thermal conductivity is due to covalent sp2bonding between carbon atoms, whereas out-of-plane heat flow is limited by weak van der Waals coupling. Herein, we review the thermal properties of graphene, including its specific heat and thermal conductivity (from diffusive to ballistic limits) and the influence of substrates, defects, and other atomic modifications. We also highlight practical applications in which the thermal properties of graphene play a role. For instance, graphene transistors and interconnects benefit from the high in-plane thermal conductivity, up to a certain channel length. However, weak thermal coupling with substrates implies that interfaces and contacts remain significant dissipation bottlenecks. Heat flow in graphene or graphene composites could also be tunable through a variety of means, including phonon scattering by substrates, edges, or interfaces. Ultimately, the unusual thermal properties of graphene stem from its 2D nature, forming a rich playground for new discoveries of heat-flow physics and potentially leading to novel thermal management applications.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

M.C. Schabel , J.L. Martins , Phys. Rev. B 46, 7185 (1992).

D.W. Bullett , J. Phys. C: Solid State Phys. 8, 2707 (1975).

R. Saito , G. Dresselhaus , M.S. Dresselhaus , Physical Properties of Carbon Nanotubes (World Scientific, Singapore, 1998).

M. Mohr , J. Maultzsch , E. Dobardžić , S. Reich , I. Milošević , M. Damnjanović , A. Bosak , M. Krisch , C. Thomsen , Phys. Rev. B 76, 035439 (2007).

C. Oshima , T. Aizawa , R. Souda , Y. Ishizawa , Y. Sumiyoshi , Solid State Commun. 65, 1601 (1988).

L. Wirtz , A. Rubio , Solid State Commun. 131, 141 (2004).

N. Mingo , D.A. Broido , Phys. Rev. Lett. 95, 096105 (2005).

D.L. Nika , E.P. Pokatilov , A.S. Askerov , A.A. Balandin , Phys. Rev. B 79, 155413 (2009).

V.N. Popov , Phys. Rev. B 66, 153408 (2002).

E. Muñoz , J. Lu , B.I. Yakobson , Nano Lett. 10, 1652 (2010).

E. Pop , Nano Res. 3, 147 (2010).

Z.-Y. Ong , E. Pop , J. Appl. Phys. 108, 103502 (2010).

B. Qiu , X. Ruan , Appl. Phys. Lett. 100, 193101 (2012).

T. Tohei , A. Kuwabara , F. Oba , I. Tanaka , Phys. Rev. B 73, 064304 (2006).

R. Nicklow , N. Wakabayashi , H.G. Smith , Phys. Rev. B 5, 4951 (1972).

T. Nihira , T. Iwata , Phys. Rev. B 68, 134305 (2003).

L.X. Benedict , S.G. Louie , M.L. Cohen , Solid State Commun. 100, 177 (1996).

J. Hone , Top. Appl. Phys. 80, 273 (2001).

L.E. Fried , W.M. Howard , Phys. Rev. B 61, 8734 (2000).

R. Reeber , K. Wang , J. Electron. Mater. 25, 63 (1996).

V.K. Tewary , B. Yang , Phys. Rev. B 79, 125416 (2009).

T. Aizawa , R. Souda , Y. Ishizawa , H. Hirano , T. Yamada , K.-i. Tanaka , C. Oshima , Surf. Sci. 237, 194 (1990).

A.M. Shikin , D. Farías , K.H. Rieder , Europhys. Lett. 44, 44 (1998).

Z.Y. Ong , E. Pop , Phys. Rev. B 84, 075471 (2011).

C. Jeong , S. Datta , M. Lundstrom , J. Appl. Phys. 109, 073718 (2011).

S. Chen , A.L. Moore , W. Cai , J.W. Suk , J. An , C. Mishra , C. Amos , C.W. Magnuson , J. Kang , L. Shi , R.S. Ruoff , ACS Nano 5, 321 (2010).

A.A. Balandin , Nat. Mater. 10, 569 (2011).

S. Chen , Q. Wu , C. Mishra , J. Kang , H. Zhang , K. Cho , W. Cai , A.A. Balandin , R.S. Ruoff , Nat. Mater. 11, 203 (2012).

J.H. Seol , I. Jo , A.L. Moore , L. Lindsay , Z.H. Aitken , M.T. Pettes , X.S. Li , Z. Yao , R. Huang , D. Broido , N. Mingo , R.S. Ruoff , L. Shi , Science 328, 213 (2010).

A.D. Liao , J.Z. Wu , X.R. Wang , K. Tahy , D. Jena , H.J. Dai , E. Pop , Phys. Rev. Lett. 106, 256801 (2011).

E. Pop , D. Mann , Q. Wang , K.E. Goodson , H.J. Dai , Nano Lett. 6, 96 (2006).

P. Kim , L. Shi , A. Majumdar , P.L. McEuen , Phys. Rev. Lett. 87, 215502 (2001).

C.Y. Ho , R.W. Powell , P.E. Liley , J. Phys. Chem. Ref. Data, 1, 279 (1972).

M.M. Sadeghi , M.T. Petters , L. Shi , Solid State Commun. 152, 1321 (2012).

T.R. Anthony , W.F. Banholzer , J.F. Fleischer , L.H. Wei , P.K. Kuo , R.L. Thomas , R.W. Pryor , Phys. Rev. B 42, 1104 (1990).

W. Jang , Z. Chen , W. Bao , C.N. Lau , C. Dames , Nano Lett. 10, 3909 (2010).

K. Saito , J. Nakamura , A. Natori , Phys. Rev. B 76, 115409 (2007).

M.T. Pettes , I. Jo , Z. Yao , L. Shi , Nano Lett. 11, 1195 (2011).

R. Berman , Phys. Rev. B 45, 5726 (1992).

Z. Chen , W. Jang , W. Bao , C.N. Lau , C. Dames , Appl. Phys. Lett. 95, 161910 (2009).

Y.K. Koh , M.-H. Bae , D.G. Cahill , E. Pop , Nano Lett. 10, 4363 (2010).

K.F. Mak , C.H. Lui , T.F. Heinz , Appl. Phys. Lett. 97, 221904 (2010).

L. Lindsay , D.A. Broido , N. Mingo , Phys. Rev. B 82, 115427 (2010).

J. Haskins , A. Kınacı , C. Sevik , H.l. Sevinçli , G. Cuniberti , T. Çağın , ACS Nano 5, 3779 (2011).

Z. Aksamija , I. Knezevic , Appl. Phys. Lett. 98, 141919 (2011).

W. Liu , M. Asheghi , J. Appl. Phys. 98, 123523 (2005).

R. Chen , A.I. Hochbaum , P. Murphy , J. Moore , P. Yang , A. Majumdar , Phys. Rev. Lett. 101, 105501 (2008).

W. Steinhögl , G. Schindler , G. Steinlesberger , M. Traving , M. Engelhardt , J. Appl. Phys. 97, 023706 (2005).

P.G. Klemens , D.F. Pedraza , Carbon 32, 735 (1994).

J.N. Hu , X.L. Ruan , Y.P. Chen , Nano Lett. 9, 2730 (2009).

W.J. Evans , L. Hu , P. Keblinski , Appl. Phys. Lett. 96, 203112 (2010).

H.J. Zhang , G. Lee , A.F. Fonseca , T.L. Borders , K. Cho , J. Nanomater. 2010, 537657 (2010).

J.N. Hu , S. Schiffli , A. Vallabhaneni , X.L. Ruan , Y.P. Chen , Appl. Phys. Lett. 97, 133107 (2010).

B. Mortazavi , A. Rajabpour , S. Ahzi , Y. Remond , S.M.V. Allaei , Solid State Commun. 152, 261 (2012).

H.J. Zhang , G. Lee , K. Cho , Phys. Rev. B 84, 115460 (2011).

W.-R. Zhong , W.-H. Huang , X.-R. Deng , B.-Q. Ai , Appl. Phys. Lett. 99, 193104 (2011).

Y. Xu , X.B. Chen , J.S. Wang , B.L. Gu , W.H. Duan , Phys. Rev. B 81, 195425 (2010).

Z. Huang , T.S. Fisher , J.Y. Murthy , J. Appl. Phys. 108, 094319 (2010).

J.W. Jiang , B.S. Wang , J.S. Wang , Appl. Phys. Lett. 98, 113114 (2011).

N. Yang , X. Ni , J.-W. Jiang , B. Li , Appl. Phys. Lett. 100, 093107 (2012).

D. Frenkel , B. Smit , Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, New York, ed. 2, 2002).

F. Hao , D.N. Fang , Z.P. Xu , Appl. Phys. Lett. 99, 041901 (2011).

A. Bagri , S.P. Kim , R.S. Ruoff , V.B. Shenoy , Nano Lett. 11, 3917 (2011).

A. Cao , J. Qu , J. Appl. Phys. 111, 053529 (2012).

X. Li , K. Maute , M.L. Dunn , R. Yang , Phys. Rev. B 81, 245318 (2010).

N. Wei , L. Xu , H.-Q. Wang , J.-C. Zheng , Nanotechnology 22, 105705 (2011).

S.-K. Chien , Y.-T. Yang , C.O.-K. Chen , Carbon 50, 421 (2012).

H. Sevinçli , G. Cuniberti , Phys. Rev. B 81, 113401 (2010).

N. Yang , G. Zhang , B.W. Li , Appl. Phys. Lett. 95, 033107 (2009).

G. Zhang , H.S. Zhang , Nanoscale 3, 4604 (2011).

Q.-X. Pei , Y.-W. Zhang , Z.-D. Sha , V.B. Shenoy , Appl. Phys. Lett. 100, 101901 (2012).

J. Lee , V. Varshney , A.K. Roy , J.B. Ferguson , B.L. Farmer , Nano Lett. 12, 3491 (2012).

L. Lindsay , D.A. Broido , Phys. Rev. B 81, 205441 (2010).

A. Javey , J. Guo , M. Paulsson , Q. Wang , D. Mann , M. Lundstrom , H. Dai , Phys. Rev. Lett. 92, 106804 (2004).

J.-Y. Park , S. Rosenblatt , Y. Yaish , V. Sazonova , H. Üstünel , S. Braig , T.A. Arias , P.W. Brouwer , P.L. McEuen , Nano Lett. 4, 517 (2004).

M.S. Shur , IEEE Electron Device Lett. 23, 511 (2002).

J. Wang , M. Lundstrom , IEEE Trans. Electron Devices 50, 1604 (2003).

R. Prasher , Phys. Rev. B 77, 075424 (2008).

C. Jeong , R. Kim , M. Luisier , S. Datta , M. Lundstrom , J. Appl. Phys. 107, 023707 (2010).

M.-H. Bae , S. Islam , V.E. Dorgan , E. Pop , ACS Nano 5, 7936 (2011).

A. Behnam , A.S. Lyons , M.-H. Bae , E.K. Chow , S. Islam , C.M. Neumann , E. Pop , Nano Lett. 12, 4424 (2012).

A. Barreiro , M. Lazzeri , J. Moser , F. Mauri , A. Bachtold , Phys. Rev. Lett. 103, 076601 (2009).

V.E. Dorgan , M.H. Bae , E. Pop , Appl. Phys. Lett. 97, 082112 (2010).

V. Perebeinos , P. Avouris , Phys. Rev. B 81, 195442 (2010).

K. Kang , D. Abdula , D.G. Cahill , M. Shim , Phys. Rev. B 81, 165405 (2010).

K.L. Grosse , M.H. Bae , F.F. Lian , E. Pop , W.P. King , Nat. Nanotechnol. 6, 287 (2011).

G.K. Dimitrakakis , E. Tylianakis , G.E. Froudakis , Nano Lett. 8, 3166 (2008).

E. Tylianakis , G.K. Dimitrakakis , S. Melchor , J.A. Dobado , G.E. Froudakis , Chem. Commun. 47, 2303 (2011).

Z.P. Chen , W.C. Ren , L.B. Gao , B.L. Liu , S.F. Pei , H.M. Cheng , Nat. Mater. 10, 424 (2011).

W. Zhang , P. Sherrell , A.I. Minett , J.M. Razal , J. Chen , Energy Environ. Sci. 3, 1286 (2010).

F. Du , D.S. Yu , L.M. Dai , S. Ganguli , V. Varshney , A.K. Roy , Chem. Mater. 23, 4810 (2011).

V. Varshney , S.S. Patnaik , A.K. Roy , G. Froudakis , B.L. Farmer , ACS Nano 4, 1153 (2010).

V. Varshney , A.K. Roy , G. Froudakis , B.L. Farmer , Nanoscale 3, 3679 (2011).

R.K. Paul , M. Ghazinejad , M. Penchev , J.A. Lin , M. Ozkan , C.S. Ozkan , Small 6, 2309 (2010).

L.L. Zhang , Z.G. Xiong , X.S. Zhao , ACS Nano 4, 7030 (2010).

K.H. Yu , G.H. Lu , Z. Bo , S. Mao , J.H. Chen , J. Phys. Chem. Lett. 2, 1556 (2011).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords: