Skip to main content Accessibility help
×
Home

Thermoelectronic energy conversion: Concepts and materials

  • R. Wanke (a1), W. Voesch (a2), I. Rastegar (a3), A. Kyriazis (a4), W. Braun (a5) and J. Mannhart (a6)...

Abstract

Thermoelectronic energy conversion can potentially provide an exceptionally efficient way to convert heat into electric power. Key components of such converters are materials with designed, small work functions. We present the principles of thermoelectronic energy conversion and discuss the advantages and challenges of the conversion process, as well the state of the art of the respective research.

Copyright

References

Hide All
1. Hatsopoulos, G.N., Gyftopoulos, E.P., Thermionic Energy Conversion, Volume I: Processes and Devices (MIT Press, Cambridge, MA, 1973).
2. Moyzhes, B.Y., Geballe, T.H., J. Phys. D Appl. Phys. 38, 782 (2005).
3. Meir, S., Stephanos, C., Geballe, T.H., Mannhart, J., J. Renew. Sustain. Energy 5, 043127 (2013).
4. Wanke, R., Hassink, G.W.J., Stephanos, C., Rastegar, I., Braun, W., Mannhart, J., J. Appl. Phys. 119, 244507 (2016).
5. Reisch, M., Halbleiter-Bauelemente (Springer, Berlin, 2007).
6. Vayenas, C.G., Bebelis, S., Ladas, S., Nature 343, 625 (1990).
7. Becquerel, E., Ann. Chim. Phys. 39, 48 (1853).
8. Guthrie, F., Proc. R. Soc. Lond. 21, 168 (1873).
9. Edison, T.A., US Patent 307031 (1884).
10. Schlichter, W., Ann. Phys. 47, 573 (1915).
11. Novikov, I., At. Energy 3, 409 (1957).
12. Gryaznov, G., At. Energy 89, 510 (2000).
13. Belbachir, R.Y., An, Z., Ono, T., J. Micromech. Microeng. 24, 085009 (2014).
14. Lee, J.-H., Bargatin, I., Vancil, B.K., Gwinn, T.O., Maboudian, R., Melosh, N.A., Howe, R.T., J. Microelectromech. Syst. 23, 1182 (2014).
15. Littau, K.A., Sahasrabuddhe, K., Barfield, D., Yuan, H., Shen, Z.-X., Howe, R.T., Melosh, N.A., Phys. Chem. Chem. Phys. 15, 14442 (2013).
16. Lee, J.H., Bargatin, I., Melosh, N.A., Howe, R.T., Appl. Phys. Lett. 100, 173904 (2012).
17. Hassink, G., Wanke, R., Rastegar, I., Braun, W., Stephanos, C., Herlinger, P., Smet, J.H., Mannhart, J., APL Mater. 3, 076106 (2015).
18. Schwede, J.W., Bargatin, I., Riley, D.C., Hardin, B.E., Rosenthal, S.J., Sun, Y., Schmitt, F., Pianetta, P., Howe, R.T., Shen, Z., Melosh, N.A., Nat. Mater. 9, 762 (2010).
19. Tyne, G.F.J., Saga of the Vacuum Tube, 2nd printing (Howard W. Sams, Indianapolis, 1987).
20. Blewett, J.P., J. Appl. Phys. 10, 831 (1939).
21. Cronin, J.L., IEE Proc. I Solid-State Electron Devices 128, 19 (1981).
22. Lafferty, J.M., J. Appl. Phys. 22, 299 (1951).
23. Shiota, I., Miyamoto, M.Y., Eds., Functionally Graded Materials (Elsevier, Amsterdam, 1997).
24. Giordano, L., Cinquini, F., Pacchioni, G., Phys. Rev. B Condens. Matter 73, 045414 (2006).
25. Vlahos, V., Lee, Y., Booske, J., Morgan, D., Turek, L., Kirshner, M., Kowalczyk, R., Wilsen, C., Appl. Phys. Lett. 94, 184102 (2009).
26. Vaughn, J.M., Wan, C., Jamison, K.D., Kordesch, M.E., IBM J. Res. Dev. 55, 414 (2011).
27. Wang, Y., Wang, J., Liu, W., Zhang, K., Li, J., IEEE Trans. Electron Devices 54, 1061 (2007).
28. Toda, Y., Matsuishi, S., Hayashi, K., Ueda, K., Kamiya, T., Hirano, M., Hosono, H., Adv. Mater. 16, 685 (2004).
29. Koeck, F.A.M., Nemanich, R.J., Diam. Relat. Mater. 15, 217 (2006).
30. May, P., Stone, J., Ashfold, M., Hallam, K., Wang, W., Fox, N., Diam. Relat. Mater. 7, 671 (1998).
31. Koeck, F.A.M., Nemanich, R.J., Lazea, A., Haenen, K., Diam. Relat. Mater. 18, 789 (2009).
32. Koeck, F.A.M., Nemanich, R.J., Balasubramaniam, Y., Haenen, K., Sharp, J., Diam. Relat. Mater. 20, 1229 (2011).
33. Khoshaman, A.H., Fan, H.D., Koch, A.T., Sawatzky, G.A., Nojeh, A., IEEE Nanotechnol. Mag. 8, 4 (2014).
34. Zhao, Y., Ryu, S., Brus, L.E., Kim, K.S., Kim, P., Nano Lett. 9, 3430 (2009).
35. Chang, J.K., Lin, W.H., Taur, J.I., Chen, T.H., Liao, G.K., Pi, T.W., Chen, M.H., Wu, C.I., ACS Appl. Mater. Interfaces 7, 17155 (2015).
36. Zhong, Z., Hansmann, P., Phys. Rev. B Condens. Matter 93, 235116 (2016).
37. Ilic, O., Bermel, P., Chen, G., Joannopoulos, J.D., Celanovic, I., Soljačić, M., Nat. Nanotechnol. 11, 320 (2016).

Keywords

Thermoelectronic energy conversion: Concepts and materials

  • R. Wanke (a1), W. Voesch (a2), I. Rastegar (a3), A. Kyriazis (a4), W. Braun (a5) and J. Mannhart (a6)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed