Skip to main content Accessibility help

Thin-film piezoelectric MEMS

  • Chang-Beom Eom (a1) and Susan Trolier-McKinstry (a1)


Major challenges have emerged as microelectromechanical systems (MEMS) move to smaller size and increased integration density, while requiring fast response and large motions. Continued scaling to nanoelectromechanical systems (NEMS) requires revolutionary advances in actuators, sensors, and transducers. MEMS and NEMS utilizing piezoelectric thin films provide the required large linear forces with fast actuation at small drive voltages. This, in turn, provides accurate displacements at high integration densities, reduces the voltage burden on the integrated control electronics, and decreases NEMS complexity. These advances are enabled by the rapidly growing field of thin-film piezoelectric MEMS, from the development of AlN films for resonator and filter applications, to their implementation in adaptive radio front ends, to the demonstration of large piezoelectricity in epitaxial Pb(Zr,Ti)O3 and PbMg1/3Nb2/3O3–PbTiO3thin films. Applications of low voltage MEMS/NEMS include transducers for ultrasound medical imaging, robotic insects, inkjet printing, mechanically based logic, and energy harvesting. As described in this article, advances in the field are being driven by and are prompting advances in heterostructure design and theoretical investigations.

    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Thin-film piezoelectric MEMS
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Thin-film piezoelectric MEMS
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Thin-film piezoelectric MEMS
      Available formats



Hide All
1.Park, S.E., Shrout, T.R., J. Appl. Phys. 82, 1804 (1997).
2.Takenaka, T., Nagata, H., J. Eur. Ceram. Soc. 25, 2693 (2005).
3.Ekinci, K.L., Roukes, M.L., Rev. Sci. Instrum. 76, 061101 (2005).
4.Yang, Y.T., Ekinci, K.L., Huang, X.M.H., Schiavone, L.M., Roukes, M.L., Zorman, C.A., Mehregany, M., Appl. Phys. Lett. 78, 162 (2001).
5.Hutchinson, A.B., Truitt, P.A., Schwab, K.C., Sekaric, L., Parpia, J.M., Craighead, H.G., Butler, J.E., Appl. Phys. Lett. 84, 972 (2004).
6.Lopez, D., Simon, M.E., Pardo, F., Aksyuk, V., Klemens, F., Cirelli, R., Neilson, D.T., Shea, H., Sorsch, T., Ferry, E., Nalamasu, O., Gammel, P.L., 2002 IEEE/LEOS International Conference on Optical MEMS (2002), p. 211.
7.Aksyuk, V.A., Simon, M.E., Pardo, F., Arney, S., Lopez, D., Villanueva, A., Solid-State Sensor and Actuator Workshop (Hilton Head Island, SC, 2002), pp. 16.
8.Marom, D.M., Neilson, D.T., Greywall, D.S., Pai, C.S., Basavanhally, N.R., Aksyuk, V., Lopez, D., Pardo, F., Simon, M.E., Low, Y., Kolodner, P., Bolle, C.A., IEEE J. Lightwave Technol. 23 (1), 1620 (2005).
9.Aksyuk, V.A., Pardo, F., Carr, D., Greywall, D., Chan, H.B., Simon, M.E., Gasparyan, A., Shea, H., Lifton, V., Bolle, C., Arney, S., Frahm, R., Paczkowski, M., Haueis, M., Ryf, R., Neilson, D.T., Kim, J., Giles, C.R., Bishop, D., J. Lightwave Technol. 21 (3), 634 (2003).
10.Trolier-McKinstry, S., Muralt, P., J. Electroceram. 12 (1–2), 7 (2004).
11.Damjanovic, D., Appl. Phys. Lett. 97 (6), 062906 (2010).
12.Cimallam, V., Pezoldt, J., Armbacher, O., J. Phys. D: Appl. Phys. 40 (20), 6386 (2007).
13.Lakin, K.M., Kline, G.R., McCarron, K.T., IEEE Trans. Microwave Theory Tech. 41 (12), 2139 (1993).
14.Ruby, R., Bradley, P., Larson, J.D., Oshmyansky, Y., Electron. Lett. 35 (10), 794 (1999).
15.Roundy, S., Wright, P.K., Rabaey, J., Comp. Commun. 26 (11), 1131 (2003).
16.Erturk, A., Inman, D.L., Piezoelectric Energy Harvesting (Wiley, New York, 2011).
17.Cook-Chennault, K.A., Thambi, N., Sastry, A.M., Smart Mater. Struct. 17 (4), 043001 (2008).
18.DuToit, N.E., Wardle, B.L., AIAA J. 45 (5), 1126 (2007).
19.Yun, J.S., Patel, S.N., Reynolds, M.S., Abowd, G.D., IEEE Trans. Mob. Comput. 10, 669 (2011).
20.Moro, L., Benasciutti, D., Smart Mater. Struct. 19, 115011 (2010).
21.von Buren, T., Mitcheson, P.D., Green, T.C., Yeatman, E.M., Holmes, A.S., Troster, G., IEEE Sens. J. 6, 28 (2006).
22.Karami, M.A., Inman, D.J., Appl. Phys. Lett. 100 (4), 042901 (2012).
23.Fong, D.D., Stephenson, G.B., Streiffer, S.K., Eastman, J.A., Auciello, O., Fuoss, P.H., Thompson, C., Science 304 (5677), 1650 (2004).
24.Polla, D.L., Francis, L.F., Annu. Rev. Mater. Sci. 28, 563 (1998).
25.Muralt, P., Polcawich, R.G., Trolier-McKinstry, S., MRS Bull. 34 (9), 658 (2009).
26.Trolier-McKinstry, S., Griggio, F., Yaeger, C., Jousse, P., Zhao, D., Bharadwaja, S.S.N., Jackson, T.N., Jesse, S., Kalinin, S.V., Wasa, K., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58 (9), 1782 (2011).
27.Wilson, S.A., Jourdain, R.P.J., Zhang, Q., Dorey, R.A., Bowen, C.R., Willander, M., Wahab, Q.U., Safaa, M.A.H., Nur, O., Quandt, E., Johansson, C., Pagounis, E., Kohl, M., Matovic, J., Samel, B., van der Wijngaart, W., Jager, E.W.H., Carlsson, D., Djinovic, Z., Wegener, M., Moldovan, C., Iosub, R., Abad, E., Wendlandt, M., Rusu, C., Persson, K., Mater. Sci. Eng. Rep. 56 (1–6), 1 (2007).
28.Smith, G.L., Pulskamp, J.S., Sanchez, L.M., Potrepka, D.M., Proie, R.M., Ivanov, T.G., Rudy, R.Q., Nothwang, W.D., Bedair, S.S., Meyer, C.D., Polcawich, R., J. Am. Ceram. Soc. 95 (6), 1777 (2012).
29.Gross, S.J., Tadigadapa, S., Jackson, T.N., Trolier-McKinstry, S., Zhang, Q.Q.Appl. Phys. Lett. 83, 174 (2003).
30.Cleland, A.N., Pophristic, M., Ferguson, I., Appl. Phys. Lett. 79, 2070 (2001).
31.Fujii, E., Takayama, R., Nomura, K., Murata, A., Hirasawa, T., Tomozawa, A., Fujii, S., Kamada, T., Torii, T.H., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54 (12), 2431 (2007).
32.Scott, J.F., Paz de Araujo, C.A., Science 246, 1400 (1989).
33.Auciello, O., Scott, J.F., Ramesh, R., Phys. Ferroelectr. Memories 51, 22 (1998).
34.Newnham, R.E., MRS Bull. 22 (5), 20 (1995).
35.Zhang, X.L., Chen, Z.X., Cross, L.E., Schulze, W.A., J. Mater. Sci. 18 (4), 968 (1983).
36.Fu, H.X., Cohen, R.E., Nature 403 (6767), 281 (2000).
37.Damjanovic, D., Appl. Phys. Lett. 97 (6), 062906 (2010).
38.Pramanick, A., Damjanovic, D., Daniels, J., Nino, J.C., Jones, J.L., J. Am. Ceram. Soc. 94 (2), 293 (2011).
39.Xu, B., Ye, Y., Cross, L.E., Bernstein, J.J., Miller, R., Appl. Phys. Lett. 74, 3549 (1999).
40.Hong, E.K., Trolier-McKinstry, S., Smith, R.L., Krishnaswamy, S.V., Freidhoff, C.B., J. Microelectromech. Syst. 15, (4), 832 (2006).
41.Desu, S.B., Vijay, D.P., Zhang, X., He, B.P., Appl. Phys. Lett. 69, 1719 (1996).
42.Streiffer, S.K., Basceri, C., Parker, C.B., Lash, S.E., Kingon, A.I., J. Appl. Phys. 86, 4565 (1999).
43.Eom, C.B., van Dover, R.B., Phillips, J.M., Werder, D.J., Marshall, J.H., Chen, C.H., Cava, R.J., Fleming, R.M., Fork, D.K., Appl. Phys. Lett. 63, 2570 (1993).
44.Tybell, T., Ahn, C.H., Triscone, J.M., Appl. Phys. Lett. 75, 856 (1999).
45.Muralt, P., J. Am. Ceram. Soc. 91, 1385 (2008); doi: 10.1111/j.1551-2916.2008.02421.x.
46.Lu, H., Liu, X., Kim, D.J., Stamm, A., Burton, J.D., Lukashev, P., Bark, C.W., Felker, D.A., Folkman, C.M., Pan, X., Rzchowski, M.S., Eom, C.-B., Tsymbal, E.Y., Gruverman, A., Adv. Mater. 24, 1209 (2012).
47.Lee, M.K., Eom, C.B., Tian, W., Pan, X.Q., Smoak, M.C., Tsui, F., Krajewski, J.J., Appl. Phys. Lett. 77, 364 (2000).
48.Triscone, J.M., Fischer, O., Brunner, O., Antognazza, L., Kent, A.D., Karkut, M.G., Phys. Rev. Lett. 64, 804 (1990).
49.Jiang, J.C., Pan, X.Q., Tian, W., Theis, C.D., Schlom, D.G., Appl. Phys. Lett. 74, 2851 (1999).
50.Dekkers, M., Nguyen, M.D., Steenwelle, R., te Riele, P.M., Blank, D.H.A., Rijnders, G.Appl. Phys. Lett. 95, 012902 (2009).
51.Shaw, T.M., Trolier-McKinstry, S., McIntyre, P.C., Annu. Rev. Mater. Sci. 30, 263 (2000).
52.Li, Y.L., Choudhury, S., Liu, Z.K., Chen, L.Q., Appl. Phys. Lett. 83, 1608 (2003).
53.Choi, K.J., Biegalski, M., Li, Y.L., Sharan, A., Schubert, J., Uecker, R., Reiche, P., Chen, Y.B., Pan, X.Q., Gopalan, V., Chen, L.-Q., Schlom, D.G., Eom, C.B., Science 306, 1005 (2004).
54.Haeni, J.H., Irvin, P., Chang, W., Uecker, R., Reiche, P., Li, Y.L., Choudhury, S., Tian, W., Hawley, M.E., Craigo, B., Tagantsev, A.K., Pan, X.Q., Streiffer, S.K., Chen, L.Q., Kirchoefer, S.W., Levy, J., Schlom, D.G., Nature 430, 758 (2004).
55.Schlom, D.G., Chen, L.Q., Eom, C.-B., Rabe, K.M., Streiffer, S.K., Triscone, J.M., Annu. Rev. Mater. Res. 237, 589 (2007).
56.Zhang, J.X., Xiang, B., He, Q., Seidel, J., Zeches, R.J., Yu, P., Yang, S.Y., Wang, C.H., Chu, Y.-H., Martin, L.W., Minor, A.M., Ramesh, R., Nat. Nanotechnol. 6, 98 (2011).
57.Sharma, A.K., Narayan, J., Jin, C., Kvit, A., Chattopadhyay, S., Lee, C., Appl. Phys. Lett. 76, 1458 (2000).
58.McKee, R.A., Walker, F.J., Chisholm, M.F., Phys. Rev. Lett. 81, 3014 (1998).
59.Lettieri, J., Critical Issues of Complex, Epitaxial Oxide Growth and Integration with Silicon by Molecular Beam Epitaxy (Pennsylvania State University, University Park, 2002);
60.Reiner, J.W., Kolpak, A.M., Segal, Y., Garrity, K.F., Ismail-Beigi, S., Ahn, C.H., Walker, F.J., Adv. Mater. 22, 2919 (2010).
61.Ramesh, R., Inam, A., Chan, W.K., Wilkens, B., Myers, K., Remschning, K., Hart, D.L., Tarascon, J.M., Science 252, 944 (1991).
62.Eom, C.B., Cava, R.J., Fleming, R.M., Phillips, J.M., van Dover, R.B., Marshall, J.H., Hsu, J.W.P., Krajewski, J.J., Peck, W.F. Jr., Science 258, 1766 (1992).
63.Paik, D.S., Park, S.E., Wda, S., Liu, S.F., Shrout, T.R., J. Appl. Phys. 85, 1080 (1999).
64.Eom, C.B., Sun, J.Z., Yamamoto, K., Marshall, A.F., Luther, K.E., Geballe, T.H., Laderman, S.S., Appl. Phys. Lett. 55, 595 (1989).
65.Baek, S.H., Park, J., Kim, D.M., Aksyuk, V., Das, R.R., Bu, S.D., Felker, D.A., Lettieri, J., Vaithyanathan, V., Bharadwaja, S.S.N., Bassiri-Gharb, N., Chen, Y.B., Sun, H.P., Folkman, C.M., Jang, H.W., Kreft, D.J., Streiffer, S.K., Ramesh, R., Pan, X.Q., Trolier-McKinstry, S., Schlom, D.G., Rzchowski, M.S., Blick, R.H., Eom, C.B., Science 334, 958 (2011).
66.Bhave, S.A., Howe, R.T., Proc. 13th Int. Conf. on Solid-State Sensors, Actuators and Microsystems (2005), p. 2139.
67.Yang, E.-H., Hishinuma, Y., Cheng, J.-G., Trolier-McKinstry, S., Bloemhof, E., Levine, B.M., J. Microelectromech. Syst. 15 (5), 1214 (2006).
68.Fanson, J.L., MRS Proc. 360, 109 (1995).
69.Him, C.L., Dean, P.D., Winzer, S.R., Proc. SPIE 3985, 394 (2000).
70.Windhorst, R.A., Cameron, R.A., Brissenden, R.J., Elvis, M.S., Fabbiano, G., Gorenstein, P., Reid, P.B., Schwartz, D.A., Bautz, M.W., Figueroa-Feliciano, E., Petre, R., White, N.E., Zhang, W.W., New Astron. Rev. 50, 121 (2006).
71.Cotroneo, V., Davis, W.M., Reid, P.B., Schwartz, D.A., Trolier-McKinstry, S., Wilke, R.H.T., Proc. SPIE 8147, 81471R (2011).
72.Hajati, A., Kim, S.G., Appl. Phys. Lett. 99, 083105 (2011).
73.Zuo, C.J., Sinha, N., Piazza, G., Sens. Act. A. 160 (1–2), 132 (2010).
74.Zlotan, S., US Patent 3965376 (June 22, 1976).
76.Roukes, M.L., Phys. World 14, 25 (2001).
77.Craighead, H.G., Science 290, 1532 (2000).
78.Nguyen, C.T.-C., IEEE Trans. Microwave Theory Tech. 47, 1486 (1999).
79.Blick, R.H., Erbe, A., Pescini, L., Kraus, A., Scheible, D.V., Beil, F.W., Höhberger, E.M., Hoerner, A., Kirschbaum, J., Lorenz, H., Kotthaus, J.P., J. Phys. Condens. Matter 14, R905 (2002).
80.Cleland, A.N., Foundations of Nanomechanics—From Solid-State Theory to Device Applications (Springer-Verlag, Berlin, 2003).
81.Akarvardar, K., Elata, D., Parsa, R., Wan, G.C., Yoo, K., Provine, J., Peurnans, P., Howe, R.T., Wong, H.S.P., IEEE IEDM (2007), p. 299.
82.Bellaiche, L., Vanderbilt, D., Phys. Rev. Lett. 83, 1347 (1999).
83.Saghi-Szabo, G., Cohen, R.E., Krakauer, H., Phys. Rev. Lett. 80, 4321 (1998).
84.Jun, O.Y., Ramesh, R., Roytburd, A.L., Appl. Surf. Sci. 252, 3394 (2006).
85.Cao, Y., Sheng, G., Zhang, J.X., Choudhury, S., Li, Y.L., Randall, C.A., Chen, L.Q., Appl. Phys. Lett. 97, 252904 (2010).
86.Chen, L.Q., J. Am. Ceram. Soc. 91, 1835 (2008).
87.Kim, H., Priya, S., Stephanou, H., Uchino, K., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1851 (2007).



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed