Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-19T15:09:16.629Z Has data issue: false hasContentIssue false

Time-of-Flight, Ion-Beam Surface Analysis for In Situ Characterization of Thin-Film Growth Processes

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Low-energy (5–15 keV) ion scattering spectroscopy (ISS) and direct recoil spectroscopy (DRS) are well-established analysis techniques that have been used for several years to characterize surfaces of materials. ISS utilizes a beam of ions in the 1–15 keV range which are scattered by a surface atom at an angle θ1 relative to the direction of incidence. In this energy range, the collisions are elastic and are described by classical two-body collision kinematics. The kinetic energy E1 of the scattered primary ion is given by

where E0 is the primary ion kinetic energy and α = M2/M1. Note that Equation 1 has real values only if M2 > M1, and ISS is not able to detect surface atoms which are lighter than the primary ion beam.

The kinetic energy of the backscattered primary particle may be measured either by using an electrostatic energy analyzer (ESA) or by pulsing the beam and using a time-of-flight (TOF) detection scheme. The ESA only detects the ion fraction (typically 10 2−10−4) of the scattered primary beam and transmits only a narrow portion of the energy distribution of these ions, whereas the TOF detection scheme simultaneously detects the full energy range of both ions and neutrals. Consequently, the required beam dose for TOF detection is 3–4 orders of magnitude smaller than that required by the ESA. A typical analysis beam dose for TOF detection is ∼1011−1012 ions/cm2, removing or displacing one part in 103−104 of the near-surface atoms and making the TOF scheme essentially nondestructive.

Type
In Situ, Real-Time Characterization of Thin-Film Growth Processes
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Krauss, A.R., Rangaswamy, M., Lin, Y., Gruen, D.M., Schultz, J.A., Schmidt, H.K. and Chang, R.P.H., in Multicomponent and Multilayered Thin Films for Advanced Microtechnologies: Techniques, Fundamentals and Devices, edited by Auciello, O. and Engemann, J. (Kluwer Academic Publishers, Netherlands, 1993) p. 251.CrossRefGoogle Scholar
2.Hammond, M.S., Schultz, J.A., and Krauss, A.R., J. Vac. Sci. Technol. (1995) in press.Google Scholar
3.Krauss, A.R. and Krohn, V., “Aspects of Secondary Ion Emission” in Mass Spectrometry 6 Specialist Periodic Reports, Royal Society of Chemistry, London, 1980.Google Scholar
4.McKinney, J.T. and Frankenthal, R.P., Proc. Ann. Meeting Nat. Assn. Corrosion Engineers (Anaheim, 1973).Google Scholar
5.Smith, D.P., J. Appl. Phys. 38 (1967) p. 340.CrossRefGoogle Scholar
6.Marchut, L., Buck, T.M., Wheatley, G.H., and McMahon, C.J., Surf. Sci. 141 (1984) p. 549.CrossRefGoogle Scholar
7.Rabalais, J.W. and Chen, J., J. Chem. Phys. 85 (1986) p. 3617.CrossRefGoogle Scholar
8.Bhattacharya, R.S., Eckstein, W., and Verbeek, H., Surf. Sci. 93 (1980) p. 563.CrossRefGoogle Scholar
9.Taglauer, E., Englert, W., Heiland, W., and Jackson, D.P., Phys. Rev. Lett. 45 (1980) p. 740.CrossRefGoogle Scholar
10.Niehus, H. and Pruss, E., Surf. Sci. 119 (1982) p. 349.CrossRefGoogle Scholar
11.Niehus, H., J. Vac. Sci. Technol. A5 (1987) p. 751.CrossRefGoogle Scholar
12.Schmidt, H.K., Schultz, J.A., and Zheng, Z., Diamond and Diamond-Like Coatings, edited by Clausing, R.E. (Plenum Press, New York, 1991) p. 669.CrossRefGoogle Scholar
13.Katayama, M., Nomura, E., Kanekama, N., Soejima, H., and Aono, M., Nucl. Instr. Meth. Phys. Res. B33 (1988) p. 857.CrossRefGoogle Scholar
14.Niehus, H. and Spitzl, R., Surface and Interface Analysis 17 (1991) p. 287.CrossRefGoogle Scholar
15.Aono, M., Oshima, C., Zaima, S., Otani, S., Ishizawa, Y., Jpn. J. Appl. Phys. 20 (1981) p. L829.CrossRefGoogle Scholar
16.Aono, M., Hou, Y., Oshima, C., and Ishizawa, Y., Phys. Rev. Lett. 49 (1982) p. 567.CrossRefGoogle Scholar
17.Aono, M., Nucl. Instrum. Meth. B2 (1984) p. 374.CrossRefGoogle Scholar
18.King, B.V., Katayama, M., Aono, M., Daley, R., and Williams, R., Vacuum 41 (1990) p. 938.CrossRefGoogle Scholar
19.Woolverton, L., Schultz, J.A., Eipers-Smith, K., and Waters, K., unpublished manuscript.Google Scholar
20.Eckstein, W., Nucl. Instrum. Meth. Phys. Res. B27 (1987) p. 78.CrossRefGoogle Scholar
21.Doyle, B., McGrath, R.T., and Pontau, A.E., Nucl. Instrum. Meth. Phys. Res. B22 (1987) p. 34.CrossRefGoogle Scholar
22.Lin, Y., Krauss, A.R., Chang, R.P.H., Auciello, O.H., Gruen, D.M., and Schultz, J.A., Thin Solid Films (1995) in press.Google Scholar
23.Im, J., Krauss, A.R., Lin, Y., Auciello, O., Gruen, D.M., and Chang, R.P.H., in preparation.Google Scholar
24.Krauss, A.R., Lin, Y., Auciello, O., Lamich, G.J., Gruen, D.M., Schultz, J.A., and Chang, R.P.H., J. Vac. Sci. Technol. A12 (1994) p. 1,943.CrossRefGoogle Scholar
25.Krauss, A.R., Auciello, O., Kingon, A.I., Ameen, M.S., Liu, Y.L., Barr, T., Graettinger, T.M., Rou, S.H., Soble, C.S., and Gruen, D.M., Appl. Surf. Sci. 46 (1990) p. 67.CrossRefGoogle Scholar
26.Mahoney, J.F., Yahiku, A.Y., Daley, H.L., Moore, R.D., and Perel, J., J. Appl. Phys. 40 (1969) p. 5,101.CrossRefGoogle Scholar
27.Auciello, O., Gifford, K.D., and Kingon, A.I., Appl. Phys. Lett. 64 (1994) p. 2,873.CrossRefGoogle Scholar
28.Auciello, O., Al-Shareef, H.N., Gifford, K.D., Lichtenwalner, D.J., Dat, R., Bellur, K.R., Kingon, A.I., and Ramesh, R., Epitaxial Oxide Thin Films and Heterostructures, edited by Fork, D.K., Phillips, J.M., Ramesh, R., and Wolf, R. (Mater. Res. Soc. Symp. Proc. 341, Pittsburgh, 1994) p. 341.Google Scholar
29.Auciello, O., Krauss, A.R., and Gifford, K.D., in Ferroelectric Thin Films: Synthesis and Basic Properties, edited by de Araujo, C.A. Paz, Scott, J.F., and Taylor, G.W. (Gordon and Breach Science Publishers, 1995) in press.Google Scholar
30.Lin, Y., Krauss, A.R., Auciello, O., Nishino, Y., Gruen, D.M., Chang, R.P.H., and Schultz, J.A., J. Vac. Sci. Technol. A12 (1994) p. 1,557.CrossRefGoogle Scholar
31.Auciello, O., Krauss, A.R., Lin, Y., Chang, R.P.H., and Gruen, D.M., in Epitaxial Oxide Thin Films and Heterostructures, edited by Fork, D.K., Phillips, J.M., Ramesh, R., and Wolf, R.M. (Mater. Res. Soc. Symp. Proc. 341, Pittsburgh, 1994) p. 385.Google Scholar
32.Poschenrieder, W., Int. J. Mas. Spec. Ion Phys. 9 (1972) p. 357.CrossRefGoogle Scholar
33.Schultz, J.A., unpublished manuscript.Google Scholar