Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-27T22:56:53.774Z Has data issue: false hasContentIssue false

Understanding materials microstructure and behavior at the mesoscale

Published online by Cambridge University Press:  09 November 2015

A.D. Rollett
Affiliation:
Department of Materials Science and Engineering, Carnegie Mellon University, USA; rollett@andrew.cmu.edu
G.S. Rohrer
Affiliation:
Department of Materials Science and Engineering, Carnegie Mellon University, USA; gr20@andrew.cmu.edu
R.M. Suter
Affiliation:
Department of Physics, Carnegie Mellon University, USA; suter@andrew.cmu.edu
Get access

Abstract

Taking the mesoscale to mean length and time scales at which a material’s behavior is too complex to be understood by construction from the atomistic scale, we focus on three-dimensional characterization and modeling of mesoscale responses of polycrystals to thermal and mechanical loading. Both elastic and plastic internal structural responses are now accessible via high-energy x-ray probes. The combination of diffraction experiments and computed tomography, for example, is yielding new insights into how void formation correlates with microstructural features such as grain boundaries and higher-order junctions. The resulting large, combined data sets allow for validation of micromechanical and thermal simulations. As detectors improve in resolution, quantum efficiency, and speed of readout, data rates and data volumes present computational challenges. Spatial resolutions approach one micrometer, while data sets span a cubic millimeter. Examples are given of applications to tensile deformation of copper, grain growth in nickel and titanium, and fatigue cracks in superalloys.

Type
Research Article
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Basic Energy Sciences Advisory Committee Subcommittee on Mesoscale Science, “From Quanta to the Continuum: Opportunities for Mesoscale Science,” US Department of Energy (September 2012); http://science.energy.gov/∼/media/bes/pdf/reports/files/OFMS_rpt.pdf (accessed December 2014).Google Scholar
Li, J., Wang, C.Z., Chang, J.P., Cai, W., Bulatov, V.V., Ho, K.M., Yip, S., Phys. Rev. B Condens. Matter 10, 104113 (2004).CrossRefGoogle Scholar
Kubin, L., Devincre, B., Hoc, T., Mater. Sci. Eng. A 483–484, 19 (2008).CrossRefGoogle Scholar
Bunge, H.J., Texture Analysis in Materials Science (Butterworths, London, UK, 1982).Google Scholar
Kords, C., Tjahjanto, D.D., Diehl, M., Raabe, D., Roters, F., Eisenlohr, P., Procedia IUTAM 2, 3 (2012).Google Scholar
Dawson, P.R., Boyce, D.E., Rogge, R., Comput. Model. Eng. Sci. 10, 123 (2005).Google Scholar
Subedi, S., Pokharel, R., Rollett, A.D., Mater. Sci. Eng. A 638, 348 (2015).CrossRefGoogle Scholar
Lebensohn, R.A., Escobedo, J.P., Bingert, J.F., Acta Mater. 61, 6918 (2013).CrossRefGoogle Scholar
Stein, C.A., Cerrone, A., Lee, S.-B., Ozturk, T., Kenesei, P., Tucker, H., Pokharel, R., Hefferan, C., Lind, J., Suter, R.M., Ingraffea, A.R., Rollett, A.D., Curr. Opin. Solid State Mater. Sci. 18, 244 (2014).CrossRefGoogle Scholar
Bulatov, V., Cai, W., Computer Simulations of Dislocations (Oxford University Press, Oxford, UK, 2006).CrossRefGoogle Scholar
Kubin, L.P., Dislocations, Mesoscale Simulations, and Plastic Flow (Oxford University Press, Oxford, UK, 2013).CrossRefGoogle Scholar
Derby, B., Acta Metall. Mater. 39, 955 (1991).CrossRefGoogle Scholar
Luo, Z.P., Zhang, H.W., Hansen, N., Lu, K., Acta Mater. 60, 1322 (2012).CrossRefGoogle Scholar
Xia, S., El-Azab, A., Model. Simul. Mater. Sci. Eng. 23, 055009 (2015).CrossRefGoogle Scholar
Liu, G.S., House, S.D., Kacher, J., Tanaka, M., Higashida, K., Robertson, I.M., Mater. Charact. 87, 1 (2014).CrossRefGoogle Scholar
Yang, W., Larson, B.C., Pharr, G.M., Ice, G.E., Budai, J.D., Tischler, J.Z., Liu, W.J., J. Mater. Res. 19, 66 (2004).CrossRefGoogle Scholar
Larson, B.C., Yang, W., Ice, G.E., Budai, J.D., Tischler, J.Z., Nature 415, 887 (2002).CrossRefGoogle Scholar
Ulvestad, A., Singer, A., Clark, J.N., Cho, H.M., Kim, J.W., Harder, R., Maser, J., Meng, Y.S., Shpyrko, O.G., Science 348, 1344 (2015).CrossRefGoogle Scholar
de Koning, M, Kurtz, R.J., Bulatov, V.V., Henager, C.H., Hoagland, R.G., Cai, W., Nomura, M., J. Nucl. Mater. 323, 281 (2003).CrossRefGoogle Scholar
Huang, H.C., Van Swygenhoven, H., MRS Bull. 34, 160 (2009).CrossRefGoogle Scholar
Fensin, S.J., Brandl, C., Cerreta, E.K., Gray, G.T., Germann, T.C., Valone, S.M., JOM 65, 410 (2013).CrossRefGoogle Scholar
Buchheit, T.E., Battaile, C.C., Weinberger, C.R., Holm, E.A., JOM 63, 33 (2011).CrossRefGoogle Scholar
Li, S.F., Lind, J., Hefferan, C.M., Pokharel, R., Lienert, U., Rollett, A.D., Suter, R.M., J. Appl. Crystallogr. 45, 1098 (2012).CrossRefGoogle Scholar
Oddershede, J., Schmidt, S., Poulsen, H.F., Sorensen, H.O., Wright, J., Reimers, W., J. Appl. Crystallogr. 43, 539 (2010).CrossRefGoogle Scholar
Choi, Y.S., Groeber, M.A., Shade, P.A., Turner, T.J., Schuren, J.C., Dimiduk, D.M., Uchic, M.D., Woodward, C., Rollett, A.D., Parthasarathy, T.A., Metall. Mater. Trans. A 45, 6352 (2014).CrossRefGoogle Scholar
Beaudoin, A.J., Obstalecki, M., Storer, R., Tayon, W., Mach, J., Kenesei, P., Lienert, U., Model. Simul. Mater. Sci. Eng. 20, 024006 (2012).CrossRefGoogle Scholar
Lim, H., Carroll, J.D., Battaile, C.C., Buchheit, T.E., Boyce, B.L., Weinberger, C.R., Int. J. Plast. 60, 1 (2014).CrossRefGoogle Scholar
Pokharel, R., Lind, J., Kanjarala, A.K., Lebensohn, R.A., Li, S.F., Kenesei, P., Suter, R.M., Rollett, A.D., Annu. Rev. Condens. Matter Phys. 5, 317 (2014).CrossRefGoogle Scholar
Schuren, J., Lind, J., Li, S.F., Bernier, J., Shade, P., Turner, T.J., Kenesei, P., Almer, J., Blank, B., Suter, R.M., Curr. Opin. Condens. Matter Mater. Sci. 19, 234 (2015).Google Scholar
Lebensohn, R.A., Acta Mater. 49, 2723 (2001).CrossRefGoogle Scholar
Jakobsen, B., Poulsen, H.F., Lienert, U., Almer, J., Shastri, S.D., Sorensen, H.O., Gundlach, C., Pantleon, W., Science 312, 889 (2006).CrossRefGoogle Scholar
Simons, H., King, A., Ludwig, W., Detlefs, C., Pantleon, W., Schmidt, S., Snigireva, I., Snigirev, A., Poulsen, H.F., Nat. Commun. 6, 6098 (2015).CrossRefGoogle Scholar
Garrison, W.M., Wojcieszynski, A.L., Mater. Sci. Eng. A 464, 321(2007).CrossRefGoogle Scholar
Choi, K.S., Liu, W.N., Sun, X., Khaleel, M.A., Acta Mater. 57, 2592 (2009).CrossRefGoogle Scholar
Uchic, M.D., Groeber, M.A., Rollett, A.D., JOM 63, 25 (2011).CrossRefGoogle Scholar
Li, S.F., Suter, R.M., J. Appl. Crystallogr. 46, 512 (2013).CrossRefGoogle Scholar
Ludwig, W., Reischig, P., King, A., Herbig, M., Lauridsen, E.M., Johnson, G., Marrow, T.J., Buffière, J.Y., Rev. Sci. Instrum. 80, 033905 (2009).CrossRefGoogle Scholar
Saylor, D.M., Morawiec, A., Rohrer, G.S., J. Am. Ceram. Soc. 85, 3081 (2002).CrossRefGoogle Scholar
Jin, Y., Lin, B., Bernacki, M., Rohrer, G.S., Rollett, A.D., Bozzolo, N., Mater. Sci. Eng. A 597, 295 (2014).CrossRefGoogle Scholar
Holm, E.A., Rohrer, G.S., Foiles, S.M., Rollett, A.D., Miller, H.M., Olmsted, D.L., Acta Mater. 59, 5250 (2011).CrossRefGoogle Scholar
Gruber, J., George, D.C., Kuprat, A.P., Rohrer, G.S., Rollett, A.D., Scr. Mater. 53, 351 (2005).CrossRefGoogle Scholar
Hefferan, C.M., Li, S.F., Lind, J., Lienert, U., Rollett, A.D., Wynblatt, P., Suter, R.M., CMC—Comput. Mater. Con. 14, 209 (2009).Google Scholar
Bäurer, M., Syha, M., Weygand, D., Acta Mater. 61, 5664 (2013).CrossRefGoogle Scholar
McKenna, I.M., Poulsen, S.O., Lauridsen, E.M., Ludwig, W., Voorhees, P.W., Acta Mater. 78, 125 (2014).CrossRefGoogle Scholar
Demirel, M.C., Kuprat, A.P., George, D.C., Rollett, A.D., Phys. Rev. Lett. 90, 016106 (2003).CrossRefGoogle Scholar
Olmsted, D.L., Holm, E.A., Foiles, S.M., Acta Mater. 57, 3704 (2009).CrossRefGoogle Scholar
Homer, E.R., Holm, E.A., Foiles, S.M, Olmsted, D.L., JOM 66, 114 (2014).CrossRefGoogle Scholar
Herbig, M., King, A., Reischig, P., Proudhon, H., Lauridsen, E.M., Marrow, J., Buffiere, J.Y., Ludwig, W., Acta Mater. 59, 590 (2011).CrossRefGoogle Scholar
Spear, A.D., Li, S.F., Lind, J.F., Suter, R.M., Ingraffea, A.R., Acta Mater. 76, 413 (2014).CrossRefGoogle Scholar
Newman, J.C. Jr., Phillips, E.P., Everett, R.A., Fatigue Analysis under Constant- and Variable-Amplitude Loading Using Small-Crack Theory (NASA, TM-1999209329, 1999).Google Scholar
Mughrabi, H., Mater. Sci. Eng. 33, 207 (1978).CrossRefGoogle Scholar
Déprés, C., Fivel, M., Tabourot, L., Scr. Mater. 58, 1086 (2008).CrossRefGoogle Scholar
Déprés, C., Robertson, C.F., Fivel, M.C., Philos. Mag. 86, 79 (2006).CrossRefGoogle Scholar
Déprés, C., Prasad Reddy, G.V., Robertson, C.F., Fivel, M.C., Philos. Mag. 94, 4115 (2014).CrossRefGoogle Scholar
Heinz, W., Pippan, R., Dehm, G., Mater. Sci. Eng. A 527, 7757 (2010).CrossRefGoogle Scholar
Bozek, J.E., Hochhalter, J.D., Veilleux, M.G., Liu, M., Heber, G., Sintay, S.D., Rollett, A.D., Littlewood, D.J., Maniatty, A.M., Weiland, H., Christ, R.J., Payne, J., Welsh, G., Harlow, D.G., Wawrzynek, P.A., Ingraffea, A.R., Model. Simul. Mater. Sci. Eng. 16, 065007 (2008).CrossRefGoogle Scholar
Miao, J.S., Pollock, T.M., Jones, J.W., Acta Mater. 57, 5964 (2009).CrossRefGoogle Scholar
Shin, C.S., Robertson, C.F., Fivel, M.C., Philos. Mag. 87, 3657 (2007).CrossRefGoogle Scholar
Ro, Y., Agnew, S.R., Gangloff, R.P., Metall. Mater. Trans. A 39A, 1449 (2008).CrossRefGoogle Scholar
Tan, X., “A New Method for Fracture Surface Studies: Combined HEDM Orientation Mapping and Absorption Tomography Applied to a Nickel Superalloy,” PhD thesis, Department of Physics, Carnegie Mellon University, Pittsburgh (2014).Google Scholar
Cerrone, A. III, Stein, C.A., Pokharel, R., Hefferan, C., Lind, J., Tucker, H., Suter, R.M., Rollett, A.D., Ingraffea, A.R., Model. Simul. Mater. Sci. Eng. 23 035006 (2015).CrossRefGoogle Scholar
Lin, B., Jin, Y., Hefferan, C.M., Li, S.F., Lind, J., Suter, R.M., Bernacki, M., Bozzolo, N., Rollett, A.D., Rohrer, G.S., Acta Mater. 99, pp. 6368 (2015).CrossRefGoogle Scholar
Van Boxel, S., Schmidt, S., Ludwig, W., Zhang, Y., Jensen, D.J., Pantleon, W., Mater. Trans. 55, 1, pp. 128–136 (2014).CrossRefGoogle Scholar