Skip to main content Accessibility help

What do crystals nucleate on? What is the microscopic mechanism? How can we model nucleation?

  • Richard Sear (a1)


Crystallization is a key process in materials science, and most materials are made by processes that involve crystallization. Crystallization starts with nucleation, a process that is poorly understood for two reasons. First, nucleation occurs in contact with the typically uncharacterized surface of an impurity in the system. Second, we typically have little direct data on the microscopic mechanism of nucleation. We have a theory called classical nucleation, but when a simple application of the theory disagrees with experiment, it is unclear whether the theory is wrong, or if some feature of the surface is missing from the model. This article briefly reviews recent work on nucleation and its mechanisms. We are not alone in working with a stochastic process whose underlying mechanism is poorly understood. Engineers often have this problem and have developed powerful statistical models for stochastic processes. Surprisingly, even though they are sometimes used by materials scientists in different contexts, these are not used to model and predict nucleation behavior. We could advance the field with their use.



Hide All
1.Pruppacher, H.R., Klett, J.D., Microphysics of Clouds and Precipitation (Reidel Publishing, Dordrecht, The Netherlands, 1978).
2.Murray, B.J., O’Sullivan, D., Atkinson, J.D., Webb, M.E., Chem. Soc. Rev. 41, 6519 (2012).
3.Ashby, M.F., Jones, D.R.H., Engineering Materials, 4th ed. (Butterworth- Heinemann, Oxford, 2011, vol. 1).
4.Chawla, K., Composite Materials: Science and Engineering, 3rd ed. (Springer, London, 2012).
5.Gurganus, C.W., Charnawskas, J.C., Kostinski, A.B., Shaw, R.A., Phys. Rev. Lett. 113, 235701 (2014).
6.Campbell, J.M., Meldrum, F.C., Christenson, H.K., Cryst. Growth Des. 13, 1915 (2013).
7.Diao, Y., Helgeson, M.E., Myerson, A.S., Hatton, T.A., Doyle, P.S., Trout, B.L., J. Am. Chem. Soc. 133, 3756 (2011).
8.Gurganus, C., Kostinski, A.B., Shaw, R.A., J. Phys. Chem. C 117, 6195 (2013).
9.Parmar, A.S., Gottschall, P.E., Muschol, M., Biophys. Chem. 129, 224 (2007).
10.Akella, S.V., Mowitz, A., Heymann, M., Fraden, S., Cryst. Growth Des. 14, 4487 (2014).
11.Tan, L., Davis, R.M., Myerson, A.S., Trout, B.L., Cryst. Growth Des. 15, 2176 (2015).
12.Page, A.J., Sear, R.P., J. Am. Chem. Soc. 131, 17550 (2009).
13.Auer, S., Frenkel, D., J. Chem. Phys. 120, 3015 (2004).
14.Valeriani, C., Sanz, E., Frenkel, D., J. Chem. Phys. 122, 194501 (2005).
15.Filion, L., Ni, R., Frenkel, D., Dijkstra, M., J. Chem. Phys. 134, 134901 (2011).
16.Debenedetti, P.G., Metastable Liquids (Princeton University Press, Princeton, NJ, 1996).
17.Sear, R.P., J. Phys. Condens. Matter 19, 033101 (2007).
18.Sear, R.P., Int. Mat. Rev. 57, 328 (2012).
19.Sear, R.P., Phys. Rev. E 70, 021605 (2004).
20.Herbert, R.J., Murray, B.J., Whale, T.F., Dobbie, S.J., Atkinson, J.D., Atmos. Chem. Phys. 14, 8501 (2014).
21.Schwind, M., Zhdanov, V.P., Zoric, I., Kasemo, B., Nano Lett. 10, 931 (2010).
22.Laval, P., Crombez, A., Salmon, J.-B., Langmuir 25, 1836 (2009).
23.Little, L.J., Sear, R.P., Keddie, J.L., Cryst. Growth Des. 15, 5345 (2015).
24.Nielsen, M.H., Aloni, S., De Yoreo, J.J., Science 345, 1158 (2014).
25.Baumgartner, J., Dey, A., Bomans, P.H.H., Coadou, C.L., Fratzl, P., Sommerdijk, N.A.J.M., Faivre, D., Nat. Mater. 12, 310 (2013).
26.Turnbull, D., J. Chem. Phys. 18, 198 (1950).
27.Kuhs, M., Zeglinski, J., Rasmuson, O.C., Cryst. Growth Des. 14, 905 (2014).
28.Sear, R.P., CrystEngCom 16, 6506 (2014).
29.Sear, R.P., Phys. Rev. E 89, 022405 (2014).
30.Proschan, F., Technometrics, 5 (3), 375 (1963).
31.Lee, E.T., Statistical Methods for Survival Data Analysis, 2nd ed. (Wiley, Hoboken, NJ, 1992).
32.Cox, D.R., Oakes, D., Analysis of Survival Data (Chapman and Hall, London, 1984).
33.Levine, J., “Statistical Explanation of Spontaneous Freezing of Water Droplets,” National Advisory Committee for Aeronautics (NACA) Tech. Note 2234 (1950).
34.Sear, R.P., Atmos. Chem. Phys. 13, 7215 (2013).
35.Dorsch, R.G., Hacker, P.T., “Photomicrographic Investigation of Spontaneous Freezing Temperatures of Supercooled Water Droplets,” National Advisory Committee for Aeronautics (NACA) Tech. Note 2142 (1950).
36.Castillo, E., Extreme Value Theory in Engineering (Academic Press, San Diego, 1988).
37.Salam, A., Lohmann, U., Lesins, G., Atmos. Chem. Phys. 7, 3923 (2007).
38.Moore, E.B., Molinero, V., Phys. Chem. Chem. Phys. 13, 20008 (2011).


Related content

Powered by UNSILO

What do crystals nucleate on? What is the microscopic mechanism? How can we model nucleation?

  • Richard Sear (a1)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.