Skip to main content Accessibility help
×
Home

ALL-ORGANIC FLEXIBLE AND TRANSARENT AMBIPOLAR FETs WITH ORGANIC BULK HETEROJUNCTIONS

Published online by Cambridge University Press:  01 February 2011

Piero Cosseddu
Affiliation:
piero.cosseddu@diee.unica.it, University of Cagliari, Electrical and Electronic Engineering, Piazza d'Armi, Cagliari, 09123, Italy, +390706755769, +390706755782
Annalisa Bonfiglio
Affiliation:
annalisa@diee.unica.it, University of Cagliari, Electrical and Electronic Engineering, Piazza d'Armi, Cagliari, 09123, Italy
Ingo Salzmann
Affiliation:
ingo.salzmann@physik.hu-berlin.de, Humboldt-Universität zu Berlin, Institut für Physik, Newtonstr. 15, Berlin, 12489, Germany
Jurge P. Rabe
Affiliation:
rabe@physik.hu-berlin.de, Humboldt-Universität zu Berlin, Institut für Physik, Newtonstr. 15, Berlin, 12489, Germany
Norbert Koch
Affiliation:
norbert.koch@physik.hu-berlin.de, Humboldt-Universität zu Berlin, Institut für Physik, Newtonstr. 15, Berlin, 12489, Germany
Get access

Abstract

We report on the realization of flexible and transparent all-organic Ambipolar Field Effect Transistors. The devices were assembled on a flexible plastic foil, i.e. Mylar®, and the contacts were realized with poly(ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and patterned by means of Soft Lithography, MicroContact Printing (μCP). As semiconductor layer we used organic bulk heterojunctions of pentacene/C60 realized either by co-deposition of the two different molecules or by a double layer structure in which pentacene was used as buffer layer at the interface with the gate dielectric. Interestingly, all devices (co-deposited and double layer), measured in air, worked in accumulation mode as ambipolar OFETs, however some interesting differences between the two structures can be pointed out. Supported by Atomic Force Microscopy, we demonstrated that growing C60 on a pre-deposited pentacene buffer layer leads to a clear improvement in the morphology and crystallinity of the deposited film allowing to improve n-type conduction by two orders of magnitude. This work is particularly interesting because on one hand it confirms the importance of the substrate properties for the ordered growth of organic semiconductors, which determines the transport properties of organic materials; moreover, it demonstrates, also for n-type and ambipolar transistors, the possibility of avoiding problems normally associated to metal contacts: the lack of mechanical robustness, flexibility, and the unfeasibility of realizing contacts with low cost techniques like printing or soft lithography. The flexibility and transparency of the final OFET structure and the simple low cost fabrication technique employed pave the way for an economic mass production of large area transparent “Plastic Electronics”.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Meijer, E. J., Leeuw, D. M. de, Setayesh, S., Veenendaal, E. van, Huisman, B.-H., Blom, P. W. M., Hummelen, J. C., Scherf, U., and Klapwijk, T. M., Nat. Mater. 2 678 (2003)10.1038/nmat978CrossRefGoogle Scholar
2. Anthopoulos, T. D., Leeuw, D. M. de, Setayesh, S., Cantatore, E., Tanase, C., Blom, P. W. M., and Hummelen, J. C., Mater. Res. Soc. Symp. Proc. 871E, I11.9.1 (2005)Google Scholar
3. Opitz, A., Bronner, M. and Brutting, W., J. Appl. Phys. 101 063709 (2007)CrossRefGoogle Scholar
4. Collins, S.F, Baxter, G. W., Wade, S. A., Sun, T., Grattan, K. T. V., Zhang, Z. Y., and Palmer, A. W., J. of Appl. Phys. 84 4649 (1998)10.1063/1.368705CrossRefGoogle Scholar
5. Lin, Y.-Y., Gundlach, D. J., Nelson, S. F., and Jackson, T. J., IEEE Electron Device Lett. 18 606 (1997)10.1109/55.644085CrossRefGoogle Scholar
6. Tessler, N., Harrison, N. T., Thomas, D. S., Friend, R. H., Appl. Phys. Lett. 73 732 (1998)10.1063/1.121983CrossRefGoogle Scholar
7. Kobayashi, S., Takenobu, T., Mori, S., Fujiwara, A., and Isawa, Y., Appl. Phys. Lett. 82 4581 (2003)10.1063/1.1577383CrossRefGoogle Scholar
8. Wade, S. A., Collins, S. F., Baxter, G. W., J. of Appl. Phys. 94 4743 (2003)10.1063/1.1606526CrossRefGoogle Scholar
9. Takenobu, T., Takahashi, T., Takeya, J., and Iwasa, Y., Appl. Phys. Lett. 90 013507 (2007)and references therein10.1063/1.2408642CrossRefGoogle Scholar
10. Smits, E. C. P., Anthopoulos, T. D., Setayesh, S., Veenendaal, E. van, Coehoorn, R., Blom, P. W., Boer, B. de, and Leeuw, D. M. de, Phys. Rev. B 73 205316 (2006)10.1103/PhysRevB.73.205316CrossRefGoogle Scholar
11. Seo, S., Park, B-N. and Evans, P. G., Appl. Phys. Lett. 88 232114 (2006)10.1063/1.2210294CrossRefGoogle Scholar
12. Yasuda, T., Goto, T., Fujita, K. and Tsutsui, T., Appl. Phys. Lett. 85 2098 (2004)10.1063/1.1794375CrossRefGoogle Scholar
13. Chua, L.-L., Zaumseil, J., Chang, J.-F., Ou, E. C.-W., Ho, P. K.-H., Sirringhaus, H. and Friend, R. H., Nature 434 194 (2005)10.1038/nature03376CrossRefGoogle Scholar
14. Dimitrakopoulos, C. D., Malenfant, P. R. L., Adv. Mat. 14 99 (2002)10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-93.0.CO;2-9>CrossRef3.0.CO;2-9>Google Scholar
15. Anthopoulos, T. D., Tanase, C., Setayesh, S., Meijer, E. J., Hummelen, J. C., Blom, P. W. M. and Leeuw, D. de, Adv. Mater. 16 2174 (2004)10.1002/adma.200400309CrossRefGoogle Scholar
16. Takahashi, T., Takenobu, T., Takeya, J., Iwasa, Y., Appl. Phys. Lett. 88 033505 (2006)10.1063/1.2166698CrossRefGoogle Scholar
17. Kuwahara, E., Kubozono, Y., Hosokawa, T., Fujiwara, A., Appl. Phys. Lett. 85 4765 (2004)10.1063/1.1818336CrossRefGoogle Scholar
18. Singh, T. B., Marjanovic, N., Stadler, P., Auinger, M., Matt, G. J., Günes, S. and Sariciftci, N. S., Journ. of Appl. Phys. 97 083714 (2005)10.1063/1.1895466CrossRefGoogle Scholar
19. Wang, H., Wang, J., Yan, X., Shi, J., Tian, H., Geng, Y. and Yan, D., Appl. Phys. Lett. 88 133508v (2006)10.1063/1.2190445CrossRefGoogle Scholar
20. Anthopoulos, T. D., Setayesh, S., Smits, E., Cölle, M., Cantatore, E., Boer, B. de, Blom, P. W. M. and Leeuw, D. de, Adv. Mater. 18 1900 (2006)10.1002/adma.200502677CrossRefGoogle Scholar
21. Bonfiglio, A., Mameli, F. and Sanna, O., Appl. Phys. Lett. 82 3550 (2002)CrossRefGoogle Scholar
22. Santato, C., Manunza, I., Bonfiglio, A., Cicoria, F., Cosseddu, P., Zamboni, R. and Muccini, M. Appl. Phys. Lett. 86 141106 (2005)10.1063/1.1898429CrossRefGoogle Scholar
23. Loi, A., Manunza, I. and Bonfiglio, A., Appl. Phys. Lett. 82 103512 (2005)10.1063/1.1873051CrossRefGoogle Scholar
24. Cosseddu, P. and Bonfiglio, A., Appl. Phys. Lett. 88 023506 (2006)10.1063/1.2166487CrossRefGoogle Scholar
25. Cosseddu, P. and Bonfiglio, A., Thin Solid Films 515 7551 (2007)10.1016/j.tsf.2006.11.182CrossRefGoogle Scholar
26. Zhang, F. J., Vollmer, A., Zhang, J., Xu, Z., Rabe, J. P., Koch, N., Org. Electron. 8 606 (2007)10.1016/j.orgel.2007.04.010CrossRefGoogle Scholar
27. Cosseddu, P., Bonfiglio, A., Salzmann, I., Rabe, J. P. and Koch, N., Org. Electron. accepted for publicationGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 8 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 16th January 2021. This data will be updated every 24 hours.

Hostname: page-component-77fc7d77f9-n279q Total loading time: 0.488 Render date: 2021-01-16T22:34:23.536Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Sat Jan 16 2021 21:53:36 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": true, "languageSwitch": true, "figures": false, "newCiteModal": false, "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

ALL-ORGANIC FLEXIBLE AND TRANSARENT AMBIPOLAR FETs WITH ORGANIC BULK HETEROJUNCTIONS
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

ALL-ORGANIC FLEXIBLE AND TRANSARENT AMBIPOLAR FETs WITH ORGANIC BULK HETEROJUNCTIONS
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

ALL-ORGANIC FLEXIBLE AND TRANSARENT AMBIPOLAR FETs WITH ORGANIC BULK HETEROJUNCTIONS
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *