Hostname: page-component-6b989bf9dc-llglr Total loading time: 0 Render date: 2024-04-14T20:00:16.220Z Has data issue: false hasContentIssue false

Application of Eutectic Ceramic Mixtures for The Functional Components of High Temperature Sofc's

Published online by Cambridge University Press:  10 February 2011

Ch. Gerk
Dept. Chem. Eng., Div. of Mater. Sci., University of Dortmund, D-44221 Dortmund, F.R.Germany,
M. Willert-Porada
Dept. Chem. Eng., Div. of Mater. Sci., University of Dortmund, D-44221 Dortmund, F.R.Germany,
Get access


A novel design for a high temperature SOFC, based on lamellar electrode-electrolyte segments obtained by solidification of an oxidic eutectic melt on an electrolyte substrate is presented. Such “composite” electrodes contain NiO or MnO - 8Y-ZrO2 lamellae, which after reduction / oxidation yield electrode-electrolyte lamellae with 1–2 μm width and a vertical dimension of> 100 μm, depending upon the amount of eutectic melt solidified on a polycrystalline substrate. The nucleation of the eutectic on a polycrystalline substrate followed by a semi-directional crystallization of the two phases yields a gradient of 3-phase boundaries over the height of such an electrode, with the number of 3-phase boundaries increasing towards the substrate.

Research Article
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



1. Ogasawara, K., Yasuda, I., Matsuzaki, Y., Ogiwara, T. and Hishinuma, M., Electrochem. Proc. Vol. 97–40 (1997) 143152 Google Scholar
2. Buchkremer, H.P., Diekmann, U., de Haart, L.G.J., Kabs, H., Stimming, U., and Stöver, D., Electrochem. Proc. Vol. 97–40 (1997) 160170 Google Scholar
3. Kakigami, S., Kurihara, T., Hisatome, N., and Nagata, K., Electrochem. Proc. Vol. 97–40 (1997) 180186 Google Scholar
4. Kawasaki, S., Okumura, K., Esaki, Y., Hattori, M., Sakaki, Y., Fujita, J., and Takeuchi, S., Electrochem. Proc. Vol. 97–40 (1997) 171179 Google Scholar
5. Itoh, H., J. Electrochem. Soc., Vol. 144 [2], 1997 Google Scholar
6. Revcolevschi, A., Dhalenne, G. and d'Yvoire, F., J. Phys. Colloq., C4 (46), S. 441447 (1985)Google Scholar
7. Kurz, W., Sahm, P.R., Gerichtet erstarrte eutektische Werkstoffe, Springer Verlag Berlin-Heidelberg, 1975, p. 120 ffGoogle Scholar
8. Dubois, B., Dhallene, G., Revcolvschi, A., J. Am. Ceram. Soc., 69 [1], C6 - C8 (1986)10.1111/j.1151-2916.1986.tb04702.xGoogle Scholar
9. Schultz, and Muan, A., J. Am. Ceram. Soc., 54 [10] 504 (1971)10.1111/j.1151-2916.1971.tb12189.xGoogle Scholar
10. Willert-Porada, M., in “Ceramic Processing Science and Technology”, ed. Hausner, H., Messing, G., Shin-ichi Hirano, Amer. Ceram. Soc, Westerville, OH, Ceram. Trans. Vol. 51 S. 501506 (1995)Google Scholar
11. Willert-Porada, M., Gerdes, T., Kolaska, H., Rödiger, K., Metall, 50 [11], 744752 (1996), Metall, 51 [1/2], 57–65 (1997)Google Scholar
12. Duval, D.J., Mat. Res. Soc. Symp. Proc. Vol. 430, 125129 (1996)10.1557/PROC-430-125Google Scholar
13. Tanner, C.W., Fung, K.-Z., and Virkar, A., “The Effect of Porous Composite Electrode on Solid Oxide Fuel Cell Performance”, J. Electrochem. Soc., Vol. 144 [1], (1997) 2130 Google Scholar
14. Fukunaga, H., Ihara, M., Sakaki, K., and Yamada, K., Solid State Ionics, Vol. 86–88, 11791185 (1996)10.1016/0167-2738(96)00284-6Google Scholar