Hostname: page-component-76dd75c94c-nbtfq Total loading time: 0 Render date: 2024-04-30T09:57:21.976Z Has data issue: false hasContentIssue false

Bio Organic-Based Gate Dielectric Materials for Thin Film Transistors

Published online by Cambridge University Press:  24 May 2012

James G. Grote
Affiliation:
US Air Force Research Laboratories, Wright-Patterson Air force Base, OH 45433
Fahima Ouchen
Affiliation:
US Air Force Research Laboratories, Wright-Patterson Air force Base, OH 45433 University of Dayton Research Institute, Dayton, OH 45469
Donna M. Joyce
Affiliation:
US Air Force Research Laboratories, Wright-Patterson Air force Base, OH 45433
Kristi M. Singh
Affiliation:
US Air Force Research Laboratories, Wright-Patterson Air force Base, OH 45433 UES Inc., Dayton, OH 45432
Narayanan Venkat
Affiliation:
US Air Force Research Laboratories, Wright-Patterson Air force Base, OH 45433 University of Dayton Research Institute, Dayton, OH 45469
Steven R. Smith
Affiliation:
US Air Force Research Laboratories, Wright-Patterson Air force Base, OH 45433 University of Dayton Research Institute, Dayton, OH 45469
Perry P. Yaney
Affiliation:
US Air Force Research Laboratories, Wright-Patterson Air force Base, OH 45433 Department of Physics and Electro-Optics Program, University of Dayton, OH 45469
Emily M. Heckman
Affiliation:
US Air Force Research Laboratories, Wright-Patterson Air force Base, OH 45433
Carrie M. Bartsch
Affiliation:
US Air Force Research Laboratories, Wright-Patterson Air force Base, OH 45433
Rajesh R. Naik
Affiliation:
US Air Force Research Laboratories, Wright-Patterson Air force Base, OH 45433
Get access

Abstract

The potential of bio-dielectrics for thin film transistor applications was explored via the incorporation of titanium dioxide (TiO2) nanoparticles, rutile form, a high dielectric constant (ε) ceramic, in the deoxyribonucleic acid (DNA) bio-polymer. The DNA-ceramic hybrid films were fabricated from stable suspensions of the TiO2 nanoparticles in viscous, aqueous DNA solutions. Dielectric characterization revealed that the incorporation of TiO2 in DNA resulted in enhanced dielectric constant (14.3 at 1 kHz for 40 wt % TiO2) relative to that of DNA in the entire frequency range of 1 kHz-1 MHz. Variable temperature dielectric measurements, in the 20-80°C range, of the DNA-TiO2 films revealed that the ceramic additive stabilizes DNA against large temperature dependent variations in both ε and the dielectric loss factor tan δ. The bulk resistivity of the DNA-TiO2 hybrid films was measured to be two to three orders of magnitude higher than that of the control DNA films, indicating their potential for utilization as insulating dielectrics in transistor and capacitor applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wang, Q. and Zhu, L., J. Poly. Sci., Part B: Polymer Physics, 49, 1421 (2011).10.1002/polb.22337Google Scholar
2. Facchetti, A., Yoon, M-H., and Marks, T. J., Adv. Mater. 17, 1705, (2005).10.1002/adma.200500517Google Scholar
3. Singh, T. B., Sariciftci, N. S., and Grote, J. G., Organic Electronics: Adv. Polym. Sci., 223, 189, (2010).Google Scholar
4. Singh, B., Sariciftci, N. S., Grote, J. G., and Hopkins, F. K., J. Appl. Phys., 100, 024514 (2006).10.1063/1.2220488Google Scholar
5. Hagen, J., Li, W-X, Spaeth, H., Grote, J. and Steckl, A., “Molecular Beam Deposition of DNA Nanometer Films”, Nano Letters, 7(1), pp. 133137, (2007).10.1021/nl062342uGoogle Scholar
6. Zhu, R-R., Wang, S-L., Zhang, R., Sun, X-Y., and Yao, S-D., Chinese Journal of Chemistry, 25, 958, (2007).10.1002/cjoc.200790186Google Scholar
7. Norwood, R. A., DeRose, C. T., Himmelhuber, R., Peyghambarian, N., Wang, J., Li, L., Ouchen, F., and Grote, J. G., Proc. SPIE, 7403, 74030A (2009).10.1117/12.830978Google Scholar
8. Norwood, R. A., Thomas, J., Peyghambarian, N., Wang, J., Li, L., Ouchen, F., and Grote, J. G., Proc. SPIE, 7765, 77650H, (2010).10.1117/12.862412Google Scholar
9. Barber, P., Balasubramanian, S., Anguchamy, Y., Gong, S., Wibowo, A., Gao, H., Ploehn, H. J., and Loye, H-C. Z., Materials, 2, 1697,(2009).10.3390/ma2041697Google Scholar
10. Kim, J. Y., Jung, H. S., Kim, J-R., and Hong, K. S., J. Electroceram., 16, 447, (2006).10.1007/s10832-006-9895-zGoogle Scholar
11. Heckman, E. M., Grote, J. G., Kenneth Hopkins, F., and Yaney, P. P., Appl. Phys. Lett. 89, 181116 (2006) APPLAB000089000018181116000001.10.1063/1.2378400Google Scholar
12. Yaney, P. P., Ouchen, F., and Grote, J. G., Proc. SPIE 7403, 74030M, (2009).10.1117/12.829129Google Scholar
13. Yarmarkin, V. K., Shulman, S. G., and Lemanov, V. V., Physics of the Solid State, 51(9), 1881, (2009).10.1134/S1063783409090194Google Scholar