Skip to main content Accessibility help
×
Home
Hostname: page-component-7ccbd9845f-692xr Total loading time: 0.271 Render date: 2023-01-30T00:49:14.124Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Bismuth tri-iodide nanoparticles synthesized from octadecene suspension

Published online by Cambridge University Press:  18 April 2012

Ivana Aguiar
Affiliation:
Compound Semiconductors Group, Facultad de Química, Universidad de la República, Montevideo, Uruguay
Laura Fornaro
Affiliation:
Compound Semiconductors Group, Centro Universitario de la Región Este, Universidad de la República, Rocha, Uruguay
Get access

Abstract

BiI3 is a semiconductor layered compound of growing interest for direct and digital imaging. This structure determines that bismuth tri-iodide crystals can grow with platelet habit. Thereby, we consider of great importance to study if such structure can determine nanoparticles of this material as well, that means, if such layers can be rolled in order to form nanotubes and/or nanorods. In light of this, the present work reports the synthesis of bismuth tri-iodide nanoparticles by the suspension method.

Bi(NO3)3.5H2O, I2 and KI were used as source materials, and 1-octadecene was used as suspension agent. The intermediate and final synthesized compounds were characterized by Xray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM).

Results clearly show that BiI3 nanoparticles can be synthesized by the suspension method, which means that the layer structure of these compounds can determine the growth of nanostructures. Nanoparticles of different sizes and morphologies were obtained, depending on the synthesis conditions. There has been not possible to control such conditions in order to obtain uniform size and morphology distributions. The use of these nanostructures may be an interesting way of improving nucleation and further growth of bismuth tri-iodide films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

2. Nason, D. and Keller, L., J. Crystal Growth, 156, 221, (1995).CrossRefGoogle Scholar
3. Dmitriev, Y., Bennett, P., Cirignano, L., Klugerman, M. and Shah, K., Proc. SPIE, 3766, 529 (1999).Google Scholar
4. Squillante, M.R. and Shah, K.S. in “Semiconductors for Room Temperature Nuclear Detector Applications”, Semiconductors and Semimetals, vol. 43. (Schlesinger, T.E. and James, R.B. Ed. San Diego, CA, USA: Academic Press, 1995), pp. 470471.Google Scholar
5. Matsumoto, M., Hitomi, K., Shoji, T. and Hiratate, Y., IEEE Trans. Nucl. Sci., 49, 4, 2526 (2002).CrossRefGoogle Scholar
6. Fornaro, L., Cuña, A., Noguera, A., Pérez, M. and Mussio, L., IEEE Trans. Nucl. Sci., 51/5, 2461 (2004).CrossRefGoogle Scholar
7. Cuña, A., Noguera, A., Saucedo, E., Fornaro, L., Cryst. Res. Technol., 39, 10, 912 (2004).Google Scholar
8. Fornaro, L., Saucedo, E., Mussio, L., Gancharov, A., Cuña, A., IEEE Tran. Nucl. Sci., 51/1, 96 (2004).CrossRefGoogle Scholar
9. Cuña, A., Aguiar, I., Gancharov, A., Pérez, M., Fornaro, L., Cryst. Res. Technol., 39, 10, 899 (2004).Google Scholar
10. Aguiar, I., Kröger, S., Fornaro, L., Nucl. Instrum. Methods Phys. Res. A., 610, I1, 332 (2009).CrossRefGoogle Scholar
11. Aguiar, I., Fornaro, L., Scentia Plena, 4, 1 (2008).Google Scholar
12. Evans, J., Thiel, P. A., and Li, M. in Perspectives on inorganic, organic, and biological crystal growth: from fundamentals to applications, 13th International Summer School on Crystal Growth (American Institute of Physics Conference Proceedings, 2007), p. 191.Google Scholar
13. Giesen, M., in Perspectives on inorganic, organic, and biological crystal growth: from fundamentals to applications, 13th International Summer School on Crystal Growth (American Institute of Physics Conference Proceedings, 2007) p. 115.Google Scholar
14. Wang, Dingsheng, Hao, Chenui, Zheng, Wen, Ma, Xiaoling, Chu, Deren, Peng, Qing, and Li, Yadon, Nano Res. 2, 130 (2009).CrossRefGoogle Scholar
15. Greenwood, N. N. and Earnshaw, A., Chemistry of elements, Second edition, (1997) p. 591.Google Scholar
16. Wang, Chunrui, Yang, Qing, Tang, Kaibin and Qian, Yitai, Chemistry Letters, 154 (2001).Google Scholar
17. Zhu, Gangqian and Liu, Peng, Cryst. Res. Technol., 44, 7, 713 (2009).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Bismuth tri-iodide nanoparticles synthesized from octadecene suspension
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Bismuth tri-iodide nanoparticles synthesized from octadecene suspension
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Bismuth tri-iodide nanoparticles synthesized from octadecene suspension
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *