Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-30T01:42:37.865Z Has data issue: false hasContentIssue false

Characterization of DyBa2Cu3O7+δ thin Films Prepared by Ozone-Assisted Co-Evaporation Technique

Published online by Cambridge University Press:  26 February 2011

T. J. Hsieh
Affiliation:
NIST, Gaithersburg, MD. Dept. of Materials and Nuclear Engineering, University of Maryland, College Park, MD.
R. V. Smilgys
Affiliation:
NIST, Gaithersburg, MD.
C. K. Chiang
Affiliation:
NIST, Gaithersburg, MD.
S. W. Robey
Affiliation:
NIST, Gaithersburg, MD.
R. J. Arsenault
Affiliation:
Dept. of Materials and Nuclear Engineering, University of Maryland, College Park, MD.
L. Salamanca-Riba
Affiliation:
Dept. of Materials and Nuclear Engineering, University of Maryland, College Park, MD.
Get access

Abstract

Superconducting thin films of DyBa2Cu3O7-δ_ are deposited on MgO(100) substrates by an ozone-assisted coevaporation technique. At a relatively low substrate temperature (610°C) and with a fixed ozone flux we prepare highly c-axis oriented films with very good superconducting properties. The critical temperatures of the films are commonly above 85 K with critical currents above 10 5 A/cm2. We report on composition, microstructure, electrical resistivity and critical current of two good films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kwo, J., Hsieh, T. C., Flemming, R. M., Hong, M., Liou, S. H., Davidson, B. A., and Feldman, L. C., Phys. Rev. B36, 4039, (1987).Google Scholar
2. Webb, C., Weng, S. L., Eckstein, J. N., Missert, N., Char, K., Schlom, D. G., Hel Iman, E. S., Beasley, M. R., Kapitulnik, A., and Harris, J. S. Jr, Appl. Phys. Lett., 51, 1191, (1987).Google Scholar
3. Berkley, D. D., Johnson, B. R., Anand, N., Beauchamp, K. M., Conroy, L. E., Goldman, A. M., Maps, J., Mauersberger, K., Mecartney, M. L., Morton, J., Tuominen, M., and Zhang, Y. J., Appl. Phys. Lett., 53, 1973, (1988).Google Scholar
4. Kwo, J., J. of Crystal Growth, 111, 965, (1991)Google Scholar
5. Johnson, B. R., Beauchamp, K. M., Wang, T., Liu, J. X., McGreer, K. A., Wan, J. C., Tuominen, M., Zhang, Y. J., Mecartney, M. L., and Goldman, A. M., Appl. Phys. Lett., 56, 1911, (1990).Google Scholar
6. Chew, N. G., Goodyear, S. W., Edwards, J. A., Satchell, J. S., Blenkinsop, S. E., and Humphreys, R. G., Appl. Phys. Lett., 57, 2016, (1990).Google Scholar
7. Schlom, D. G., Eckstein, J. N., Hellman, E. S., Streiffer, S. K., Harris, J. S. Jr, Beasley, M. R., Bravman, J. C., Geballe, T. H., Webb, C., von Dessonneck, K. E., and Turner, F., Appl. Phys. Lett., 52, 1660, (1988).Google Scholar
8. Matijasevic, V., Rosenthal, P., Shinohara, K., Marshall, A. F., Hammond, R. H., and Beasley, M. R., J. Mater. Res., 6, 682, (1991).Google Scholar
9. Tsuge, H. and Matsukura, N., IEEE Trans. Magn., 27, 1009, (1991).Google Scholar
10. Matijasevic, V., Hammond, R. H., Rosenthal, P., Shinohara, K., Marshall, A. F., and Beasley, M. R., Supercond. Sci. Technol. 4, S376, (1991).Google Scholar