No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
Schottky barrier diodes fabricated on Silicon carbide have been demonstrated as gas sensors for deployment in extreme environments. It has been shown that the interfacial layer formed at the Metal – Semiconductor junction, determines both the sensitivity and the reliability of the device. Hence, accurate knowledge of the thickness and interfacial trap density of this layer is required to make predictions of the behaviour of the sensor in the environment under investigation and to predict its variation with time. Diode parameters, such as the ideality factor, barrier height and series resistance have been extracted from experimental measurements on Palladium Schottky Barrier diodes on 4H SiC, over a range of temperatures. The comparison of the parameters extracted from modified Norde function, Cheung's method and Thermonic Emission model has been performed. The variation in the barrier height obtained is quite marked between the different techniques. The reverse I-V characteristics have been used to extract thickness of the interfacial layer, by fitting to the experimental data using the TEBIL model to extract the value of Dit from ä and the ideality factor, assuming the interfacial layer is stoichiometric SiO2 . This allows a comparison between the effective interfacial layer behaviour for the different parameter extraction techniques and demonstrates that knowledge of this interfacial layer is influenced by the technique selected.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.