Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-24T20:48:47.048Z Has data issue: false hasContentIssue false

A Comparison of the Photophysical Properties of Thiolate-Capped CdS Quantum Dots with Thiolate-Capped CdS Molecular Clusters

Published online by Cambridge University Press:  10 February 2011

Lee K. Yeung
Affiliation:
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208
Kelly Sooklal
Affiliation:
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208
Rahina Mahtab
Affiliation:
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208
Bin Zhang
Affiliation:
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208
Richard D. Adams
Affiliation:
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208
Catherine J. Murphy
Affiliation:
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208
Get access

Abstract

In the last several years, great advances have been made in the ability to synthesize semiconductor quantum dots with very narrow size distributions. Here, we report the synthesis of a series of thiolate-capped CdS quantum dots having reasonably narrow size distributions and make optical property comparisons to the crystallographically defined CdS molecular clusters having essentially “zero” size distribution. These clusters contain a “Cd10S4” core and thiolate/halide capping ligands. The luminescence of the molecular clusters, like the nanoparticles, is greatly influenced by the nature of the capping ligands. Additionally, the luminescence of the molecular clusters can be quite similar to that observed for their larger quantum dot counterparts.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Murphy, C.J., J. Cluster Sci., 7, 341 (1996).10.1007/BF01171187Google Scholar
2. Hasselbarth, A., Eychmuller, A., Weller, H., Chem. Phys. Lett., 203, 271 (1993).10.1016/0009-2614(93)85400-IGoogle Scholar
3. Hosokawa, H., Ogata, T., Yuji, W., Murakoshi, K., Sakata, T., Mori, H., Yanagida, S., J. Chem. Soc., Faraday Trans., 92, 4575 (1996)10.1039/ft9969204575Google Scholar
4. Adams, R.D., Zhang, B., Murphy, C.J., Yeung, L.K., Chem. Commun., 4, 383 (1999)10.1039/a809443hGoogle Scholar
5. Murphy, C.J., Lisensky, G.C., Leung, L.K., Kowach, G.R., Ellis, A.B., J. Am. Chem. Soc., 112, 8344 (1990)10.1021/ja00179a019Google Scholar
6. Herron, N., Wang, Y., Eckert, H., J. Am. Chem. Soc., 112, 1322 (1990)10.1021/ja00160a004Google Scholar
7. Sooklal, K., Cullum, B.S., Angel, S. Micheal, Murphy, C.J., J. Phys. Chem, 100, 4551 (1996)10.1021/jp952377aGoogle Scholar
8. Dance, I.G., Inorg. Chim. Acta, 108, 227 (1985). P.D. Ellis, Science, 221, 1141 (1983)10.1016/S0020-1693(00)81285-2Google Scholar
9. Vossmeyer, T., Reck, G., Katsikas, L., Haupt, E.T.K., Schulz, B., Weller, H., Science, 267, 1476, (1995); P.A.W. Dean, J.J. Vittal, Inorg. Chem., 25, 514 (1986)10.1126/science.267.5203.1476Google Scholar
10. Weller, H., Angew. Chem. Int. Ed. Engl., 32, 41 (1993)10.1002/anie.199300411Google Scholar
11. Bertonocello, R., Bettinelli, M., Casarin, M., Maccato, C., Pandolfo, L. and Vittadini, A., Inorg. Chem., 21, 4707 (1997).10.1021/ic970165hGoogle Scholar
12. Fojtik, A., Weller, H., Koch, V., Henglein, A., Ber. Bunsenges. Phys. Chem., 88, 969 (1984).10.1002/bbpc.19840881010Google Scholar
13. Chestnoy, N., T.D. Harris, Hull, R., Brus, L.E., J. Phys. Chem., 90, 3393 (1986); Y. Wang, N. Herron, J. Phys. Chem., 95, 525 (1991); J.Z. Zhang, R.H. O'Neil, T.W. Roberti, J. Phys. Chem., 98, 3859 (1994); V.L. Colvin,, A.P. Alivisatos, J. Chem. Phys., 97, 730 (1992).10.1021/j100406a018Google Scholar
14. Alivisatos, A.P., J. Phys. Chem., 100, 13226 (1996); M. Nirmal, D.J. Norris, M. Kuno, M.G. Bawendi, Phys. Rev. Lett., 75, 3728, (1996); V. Jungnickel, F. Henneberger, J. Lumin., 70, 238, (1996).10.1021/jp9535506Google Scholar
15. Empedocles, S.A., Norris, D.J., Bawendi, M.G., Phys. Rev. Lett., 77, 3873, (1996); H. Hess, E. Betzig, T.D. Harris, L.N. Pfeiffer, K.W. West, Science, 264, 1740, (1994); D. Gammon, E. Snow, D. Katzer, Appl. Phys. Lett., 67, 2391, (1995)10.1103/PhysRevLett.77.3873Google Scholar
16. Mittleman, D.M., Schoenlein, R.W., Shiang, J.J., Colvin, V.L., Alivisatos, A.P., Shank, C.V., Physical Review B-Condensed Matter, 49, 14435 (1994)10.1103/PhysRevB.49.14435Google Scholar
17. Herron, N., Calabrese, J.C., Farneth, W.E., Wang, Y., Science, 249, 1426 (1993).10.1126/science.259.5100.1426Google Scholar