Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-04-30T18:04:25.943Z Has data issue: false hasContentIssue false

Core-Satellite Metallic Nanoclusters in Silica Obtained by Multiple Ion Beam Processing

Published online by Cambridge University Press:  01 February 2011

Giovanni Mattei
Affiliation:
giovanni.mattei@unipd.it, University of Padova, Department of Physics, via Marzolo 8, Padova, I-35131, Italy, +39.049.8277045, +39.049.8277003
Valentina Bello
Affiliation:
bello@padova.infm.it, University of Padova, Department of Physics, via Marzolo 8, Padova, I-35131, Italy
Paolo Mazzoldi
Affiliation:
paolo.mazzoldi@unipd.it, University of Padova, Department of Physics, via Marzolo 8, Padova, I-35131, Italy
Giovanni Pellegrini
Affiliation:
pellegrini@padova.infm.it, University of Padova, Department of Physics, via Marzolo 8, Padova, I-35131, Italy
Chiara Maurizio
Affiliation:
maurizio@esrf.fr, CNR-INFM, ESRF, GILDA-CRG, Rue Horowitz 6, B.P. 220, Grenoble, 38043, France
Giancarlo Battaglin
Affiliation:
battagli@unive.it, University of Venice, Department of Physical Chemistry, Dorsoduro 2137, Venice, I-30123, Italy
Get access

Abstract

Ion irradiation has been used to transform spherical bimetallic AuAg nanocluster embedded in silica in a more complex structure made of a central cluster surrounded by a halo of smaller satellite nanoclusters, whose composition, size and distance from the central cluster can be tailored by controlling the irradiation parameters. This peculiar topology produces a red-shift of the surface plasma resonance of the composite through the electromagnetic coupling between the central cluster and the satellites. A calculation of the local field properties of the investigated systems within the fully-interacting generalized Mie theory showed that the satellite topology produces large local field enhancements around the central cluster.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mazzoldi, P., Arnold, G.W., Battaglin, G., Gonella, F., and Haglund, R.F., Nonlin. Opt. Phys. Mat. 5, 285 (1996)Google Scholar
2. Mattei, G., Nucl. Instr. and Meth. B 191, 323 (2002)Google Scholar
3. Gonella, F., Mattei, G., Mazzoldi, P., Sada, C., Battaglin, G., and Cattaruzza, E., Appl. Phys. Lett. 75, 55 (1999)Google Scholar
4. Magruder, R.H. III, Wittig, J.E., Zuhr, R.A., J. Non-Cryst. Solids 163, 162 (1993)Google Scholar
5. Cattaruzza, E., Battaglin, G., Gonella, F., Mattei, G., Mazzoldi, P., Polloni, R., Scremin, B.F., Applied Surface Science 247, 390 (2005)Google Scholar
6. Mazzoldi, P. and Mattei, G., La Rivista del Nuovo Cimento 28, 1 (2005)Google Scholar
7. Mattei, G., Marchi, G. De, Maurizio, C., Mazzoldi, P., Sada, C., Bello, V., and Battaglin, G., Phys. Rev. Lett. 90, 085502 (2003)Google Scholar
8. Rizza, G., Cheverry, H., Gacoin, T., Lamasson, A., Henry, S., J. Appl. Phys. 101, 14321 (2007)Google Scholar
9. Mattei, G., Bello, V., Battaglin, G., Marchi, G. De, Maurizio, C., Mazzoldi, P., Parolin, M., and Sada, C., J. Non-Cryst.Solids 322, 17 (2003).Google Scholar
10. Bello, V., G. De Marchi, Maurizio, C., Mattei, G., Mazzoldi, P., and Sada, C., J. NonCryst. Solids 345–346, 685 (2004).Google Scholar
11. Mattei, G., Bello, V., Mazzoldi, P., Pellegrini, G., Sada, C., Maurizio, C., Battaglin, G., Nucl. Instrum. and Meth. B 240,128 (2005)Google Scholar
12. Pellegrini, G., Bello, V., Mattei, G., Mazzoldi, P., submitted.Google Scholar
13. Pivin, J.C. and Rizza, G., Thin Solid Films 366, 284(2000)Google Scholar
14. Miotello, A., Marchi, G. De, Mattei, G., Mazzoldi, P., and Sada, C., Phys. Rev. B 63, 075409 (2001)Google Scholar