Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-04-30T17:37:39.665Z Has data issue: false hasContentIssue false

Correlation of Intermediate Ion Energy Induced Extended Defect Continuity to Enhanced Pinning Potential in Tl-2212 Films

Published online by Cambridge University Press:  10 February 2011

P. Newcomer Provencio
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
E. L. Venturini
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
B. L. Doyle
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
D. K. Brice
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
H. Schöne
Affiliation:
Phillips Laboratory/VTMC, Kirtland AFB, NM 87117
Get access

Abstract

Lattice defects are introduced into the structure to suppress the motion of magnetic vortices and enhance the critical current density in high temperature superconductors. Point defects are not very effective pinning sites for the cuprate superconductors; however, extended defects, such as linear tracks, have been shown to be strong pinning sites. We study the superconducting cuprate TI-2212 (the numbers designate Tl-Ba-Ca-Cu stoichiometry). Large enhancements of vortex pinning potential were observed in TI-2212 after high-intermediate energy heavy-ion irradiations where non-continuous extended defects were induced at dE/dx of 9 to 15.2 keV/nm (60 MeV Au, 60 MeV Cu, and 30 MeV Au) and continuous linear defects were induced at 19.5keV/nm (88MeV Au). Our research addresses the question of pinning in highly anisotropic materials like Tl-2212 where the vortices are “pancakes” rather than “rods” and suitable defect structures may be discontinuous extended damage domains. The defect microstructure and the effectiveness of the pinning potential in TI-2212 after irradiation by intermediate energy Au at lower dE/dx of 5–15 keV/nm, where recoils are more significant, is studied using high resolution transmission electron microscopy digital imaging and a SQUID magnetometer. The nature of the ion irradiation damage at these intermediate dE/dx will be correlated to the average vortex pinning potential and the TRIMRC calculations for recoils.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yeshurun, Y., Malozemoff, A.P., Phys. Rev. Lett. 60 (1988) 2202.Google Scholar
2. Umezawa, A., Crabtree, G. W., Liu, J.Z., Weber, H. W., Kwok, W.K., Nunez, L.H., Moran, T.J., Sowers, C.H., Claus, H., Phys. Rev. B36 (1987) 7151.Google Scholar
3. van Dover, R.B., Gyorgy, E.M., Schneemeyer, L.F.,. Mitchell, W., Rao, K.V., Puzniak, R., J.V. Wasczczak, Nature 342 (1989) 55.Google Scholar
4. Barbour, J.C., Venturini, E.L., Ginley, D.S., Nucl. Instr. & Meth B59/60, 1395 (1991).Google Scholar
5. Barbour, J.C., Venturini, E.L., Ginley, D.S., and Kwak, J.F., Nucl. Instr. & Meth. B65, 531 (1992).Google Scholar
6. Venturini, E.L., Barbour, J.C., Ginley, D.S., Baughman, R.S., Morosin, B., Appl. Phys. Lett. 56 (1990) 2456.Google Scholar
7. Newcomer, P.P., Barbour, J.C., Wang, L.M., Venturini, E.L., Kwak, J.F., Ewing, R.C., Miller, M.L., B. Morosin, Physica C 267 (1996) 243.Google Scholar
8. Civale, L., Marwick, A.D., Worthington, T.K., Kirk, M.A., Thompson, J.R., Krusin-Elbaum, L., Sun, J., Clem, J.R., Holtzberg, F., Phys. Rev. Lett. 67 (1991)648.Google Scholar
9. Konczykowski, M., Rullier-Albenque, F., Jacoby, E.R., Shaulov, A., Yeshurun, J., Lejay, P., Phys. Rev. B44 (1991) 7167.Google Scholar
10. Zhu, Y., Cai, Z.X., Budhani, R.C., Suenaga, M., Welch, D.O., Phys. Rev. B48 (1993) 6436.Google Scholar
11. Hardy, V., Groult, D., Provost, J., Hervieu, M., Raveau, B., Bouffard, S., Phycia C 178 (1991) 255.Google Scholar
12. Wahl, A., Hervieu, M., Van Tendeloo, G., Hardy, V., Provost, J., Groult, D., Simon, Ch., Raveau, B., Radiation Effects and Defects in Solids 133 (1995) 293.Google Scholar
13. Budhani, R.C., Holstein, W.L., Suenaga, M., Phys. Rev. Lett. 72 (1994) 566.Google Scholar
14. Budhani, R.C., Suenaga, M., Liou, S.H., Phys. Rev. Lett. 69(26) (1992) 3816.Google Scholar
15. Venturini, E.L., Newcomer, P.P., Schone, H., Doyle, B.L., Myers, K.E., Nucl. Instr. and Meth. B 127/128 (1997) 587.Google Scholar
16. Newcomer, P.P., Venturini, E. L., Schöne, H., Doyle, B. L., Myers, K. E., Mater. Res. Soc. Symp.Proc. 439 (1996) 639.Google Scholar
17. Houpert, C., Studer, F., Groult, D., Toulemonde, M., Nucl. Instrum. Methods B39 (1989) 720.Google Scholar
18. Studer, F. and Toulemonde, M., Nucl. Instr. and Meth. B65 (1992) 560.Google Scholar
19. Meftah, A., Brisard, F., Constntini, J.M., Hage-Ali, M., Stouqert, J.P., Studer, F., Toulemonde, M., Phys. Rev. B48 (1993) 920.Google Scholar
20. Holstein, W.L., Wilker, C., Laubacher, D.B., Face, D.W., Pang, P., Warrington, M.S., Carter, C.F., Parisi, L.A., J. Appl. Phys. 74 (1993) 1426.Google Scholar
21. Lauder, A., Wilker, C., Kountz, D.J., Holstein, W.L., Face, D.W., IEEE Trans. Appl. Supercond. 3 (1993) 1683.Google Scholar
22. Biersack, J., Haggmark, L., Nucl. Instr. and Meth. B 174 (1980) and J. Ziegler, Vol.2–6 Pergamon Press, 19771980.Google Scholar
23. Brice, D.K., Nucl. Instr. and Meth. Vol. B 44 (1990) 302.Google Scholar
24. Gyorgy, E.M., van Dover, R.B., Jackson, K.A., Schneemeyer, L.F. and Waszczak, J.V., Appl. Phys. Lett. 55 (1989) 283.Google Scholar