Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-30T06:54:08.544Z Has data issue: false hasContentIssue false

Correlations Between Conditions of Synthesis, Phase Composition and Luminescent Properties of Eu - Polytantalate

Published online by Cambridge University Press:  01 February 2011

Vladimir Vasilyev
Affiliation:
Air Force Research Laboratory, Sensors Directorate, Hanscom AFB, MA
Alvin Drehman
Affiliation:
Air Force Research Laboratory, Sensors Directorate, Hanscom AFB, MA
Lionel Bouthillette
Affiliation:
Air Force Research Laboratory, Sensors Directorate, Hanscom AFB, MA
Get access

Abstract

Correlations between synthesis conditions, phase composition, and spectral properties of the sintered ceramic, thin films and single crystals of EuTa7O19 phosphors have been studied using x-ray diffractometry and temperature dependent photoluminescence (PL) spectroscopy at temperatures between 18 K and 650 K. From the PL spectra of Eu3+, one can obtain information about the area of homogeneity of phases, their temperature transformations, and changes in the bonding character in the neighborhood of the luminescent ion. As a result, this information helps to optimize the synthesis parameters for luminescent materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pinaeva, M.M., Kuznetsova, V.V., Vasilyev, V.S., Shkirman, S.F. and Svetlova, V.A., Zh. Prikl. Spektroscop., 27 (3), 442445 (1977).Google Scholar
2. Vasilyev, V.S. and Pinaeva, M.M., Rus. J. Inorg. Chem., 25 (4), 500504 (1980).Google Scholar
3. Vasilyev, V.S., Pinaeva, M.M. and Pinaev, G.F., Doklady Physics, 48 (1), 2123 (2003).Google Scholar
4. Vasilyev, V.S., Drehman, A.J. and Bouthillette, L.O., MRS Symp. Proc. 749, W5.8.1 (2003).Google Scholar
5. Kubota, S., Shimada, M., Takisawa, H. and Endo, T., J. All. Comp. 241, 16– 21 (1996).Google Scholar
6. Blasse, G., J. Chem. Phys. 45, 23562360 (1966).Google Scholar
7. Gatehouse, B.M., J. Solid State Chem., 27, 209 (1979).Google Scholar
8. Langenbach-Kuttert, B., Sturm, J. and Gruehn, R.. Z. Anorg Allg Chem., 543, 117128 (1986).Google Scholar
9. Shaffrath, U. and Gruehn, R., Z. Anorg. Allg. Chem., 588, 4354 (1990).Google Scholar
10. Guo, G.-C., Zhuang, J.-N., Wang, Y.-G., Chen, J.-T., Zhuang, H.-H., Huamg, J.-S. and Zhang, Q.-E., Acta Cryst., C52, 57 (1996).Google Scholar
11. Blasse, G., Bril, A. and Nieuwport, W.C., J. Pys. Chem. Solids, 27, 15871592 (1966).Google Scholar
12. Blasse, G. and Bril, A., Philips Res. Repts, 22, 4654 (1967).Google Scholar
13. Ibarra-Palos, A., Villafuerte-Castrejón, M.E., Duque, J. and Pomés, R.. J. Solid State Chem., 124, 272277 (1996).Google Scholar
14. Ayer, P.N. and Smith, A.J., Acta Cryst., 23, 740 (1967).Google Scholar
15. Sirotinkin, V.P., Evdokimov, A.A., Tadzhi-Aglaev, Kh.G., Rus. J. Inorg. Chem., 29, 829 (1984).Google Scholar
16. Verhaar, H.C.G., Donker, H., Dirksen, G.H., Lammers, M.J.J., Blasse, G., Torardi, C.C. and Brixner, L.H., J. Solid State Chem., 60, 2028 (1985).Google Scholar
17. Reisman, A., Holtzberg, F., Berkenblit, M. and Berry, M., J. Amer. Ceram. Soc., 78, 4514 (1956).Google Scholar