Hostname: page-component-758b78586c-72lk7 Total loading time: 0 Render date: 2023-11-27T22:49:22.975Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Design and application of gradient annealing devices for the parallel thermal processing of Fe/Pt multilayers

Published online by Cambridge University Press:  26 February 2011

Sigurd Thienhaus
Affiliation:, caesar, Combinatorial Materials Science, Germany
Robert Hiergeist
Affiliation:, caesar, Combinatorial Materials Science, Germany
Alan Savan
Affiliation:, caesar, Combinatorial Materials Science, Germany
Alfred Ludwig
Affiliation:, caesar, Combinatorial Materials Science, Germany
Get access


This paper discusses the design and use of gradient annealing devices. Generally, it is intended to use such devices for the rapid optimization of thin film materials by simultaneous thermal processing at different temperatures. Furthermore, these devices are efficient for short- time annealing experiments. They are used in order to quickly vary the annealing parameters (temperature, time) from sample to sample. Here, nanoscale Fe/Pt multilayer precursor thin films for the fabrication of hard magnetic Fe-Pt thin films are investigated as a test system. First results prove the usefulness of the gradient annealing devices for high-throughput experiments.

Research Article
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



1. Yoshizawa, Y., Oguma, S., and Yamauchi, K., J. Appl. Phys. 64 (10), 60446046 (1988).Google Scholar
2. Shibata, K., Mater. Trans. 44, 1542 (2003).Google Scholar
3. Ivanov, O. A., Solina, L. V., Demshina, V. A., Magat, L. M., Phys. Met. Metallogr. (Fiz. Metal. Metalloved.) 35, 92 (1973).Google Scholar
4. Endo, Y., Kikuchi, N., Kitakami, O., Shimada, Y., J. Appl. Phys. 89, 7065 (2001).Google Scholar
5. Kneller, E., Hawig, R., IEEE Trans. on Magn. 27, 3588 (1991).Google Scholar
6. Liu, J. P., Luo, C. P., Liu, Y., Sellmyer, D. J., Appl. Phys. Lett. 72, 483 (1998).Google Scholar
7. Sabiryanov, R. F., Jaswal, S. S., J. Magnetism and Magn. Mater. 177–181, 989 (1998).Google Scholar
8. Ludwig, A., Zotov, N., Savan, A., Groudeva-Zotova, S. (2005), Investigation of hard magnetic properties in the Fe-Pt system by combinatorial deposition of thin film multilayer libraries, Applied Surface Science (in print).Google Scholar
9. Koida, et al. , Appl. Phys Lett. 80, 565 (2002).Google Scholar
10. Nishimura, et al. Appl. Phys Lett. 82, 1571 (2003).Google Scholar
11. Minami, et al. , Jpn. J. Appl. Phys. Vol.41, 149 (2002).Google Scholar
12. Wakisaka, et al. Appl. Surface Science 223, 264 (2004).Google Scholar
13. Ohkubo, et al. Appl. Phys. Lett. 84 (8), 1350 (2004).Google Scholar
14. Christen, et al. , Measurement Science and Technology 16, 21 (2005).Google Scholar
15. Maeda, T., Kai, T., Kikitsu, A., Nagase, T., and Akiyama, J., Appl. Phys. Lett. 80 (12), 2147–2149 (2002).Google Scholar
16. Takahashi, Y. K., Ohnuma, M., and Hono, K., Journal of Magnetism and Magnetic Materials 246, 259265 (2002).Google Scholar
17. Wierman, K. W., Platt, C. L., and Howard, J. K., Journal of Magnetism and Magnetic Materials 278, 214217 (2004).Google Scholar