Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-17T18:13:49.043Z Has data issue: false hasContentIssue false

Dinosaur and Crocodile Fossils from the Mesozoic of Portugal: Neutron Tomography and Synchrotron-Radiation Based Micro-Computed Tomography

Published online by Cambridge University Press:  23 May 2011

Rui M.S. Martins
Affiliation:
Unidade de Física e Aceleradores, Instituto Tecnológico e Nuclear, EN10, 2696-953 Sacavém, Portugal Centro de Física Nuclear da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal Museu da Lourinhã, Rua João Luis de Moura, 2530-157 Lourinhã, Portugal CENIMAT/I3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
Felix Beckmann
Affiliation:
Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Max-Planck-Str. 1, 21502 Geesthacht, Germany
Rui Castanhinha
Affiliation:
Museu da Lourinhã, Rua João Luis de Moura, 2530-157 Lourinhã, Portugal
Octávio Mateus
Affiliation:
Museu da Lourinhã, Rua João Luis de Moura, 2530-157 Lourinhã, Portugal CICEGe, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
Philipp Klaus Pranzas
Affiliation:
Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Max-Planck-Str. 1, 21502 Geesthacht, Germany
Get access

Abstract

Portugal is ranked within the 10 countries with the most dinosaur taxa and the Lourinhã Formation is known by the Late Jurassic findings of dinosaurs and other fossils. In many cases, studies of the external morphological characteristics of the fossils are not sufficient to extract all the information for a paleontological study and, thus, observations of internal structures, using non-destructive techniques, are required. The fossils studied in the present work belong to the Museum of Lourinhã. The access to the Geesthacht Neutron Facility in Germany allowed us to characterize a jaw of the dinosaur Baryonyx walkeri specimen and the jaw of a crocodile (possibly a Tomistomidae) by Neutron Tomography. The study allowed us to detect the presence of teeth inside the jaws and it provides valuable information about the development of its dental characteristics. Synchrotron radiation based micro-computed tomography studies on tiny samples have been performed at the beamline HARWI II operated by the Helmholtz-Zentrum Geesthacht at the storage ring DORIS III at the Deutsches Elektronen–Synchrotron DESY in Hamburg, Germany. The first data recorded for eggshells collected in the Lourinhã Formation is shown. It allowed us to visualize the morphology of the pores and their connectivity in the eggshells, providing information that is either exceedingly difficult or impossible to obtain by traditional methods based on section cutting.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Santana Fossils, An Illustrated Atlas, edited by Maisey, J.G. (T.H.F. Publications, Inc., T.F.H. Plaza, Third & Union Aves., Neptune, NJ 07753, 1991).Google Scholar
2. Hill, G., J. Geol. Soc. London 146, 539 (1989).Google Scholar
3. Antunes, M. T., Mem. Acad. Ciências de Lisboa 37, 125 (1998).Google Scholar
4. Mateus, O., Mem. Acad. Ciências de Lisboa 37, 111 (1998).Google Scholar
5. Bonaparte, J. and Mateus, O., Revista del Museo Argentino de Ciencias Naturales 5, 13 (1999).Google Scholar
6. Antunes, M. T. and Mateus, O., C. R, Palevol. 2, 77 (2003).Google Scholar
7. Mateus, O. and Milán, J., New Mexico Museum of Natural History and Science 51, 81 (2010).Google Scholar
8. Mateus, I., Mateus, H., Antunes, M. T., Mateus, O., Taquet, P., Ribeiro, V. and Manupella, G., C.R. Académie des Sciences, Sciences de la Terre et des Planètes 325, 71 (1997).Google Scholar
9. Ricqlès, A. ,Mateus, O., Antunes, M.T. and Taquet, P., C. R. Acad. Sci. Paris, Sciences de la Terre et des planètes / Earth and Planetary Sciences 332, 647 (2001).Google Scholar
10. Castanhinha, R., Araújo, R. and Mateus, O., J. Vert. Paleontol. 29(3), 76A (2009).Google Scholar
11. Milàn, J., Christiansen, P. and Mateus, O., Kaupia, Darmstädter Beiträge zur Naturkunde 14, 47 (2005).Google Scholar
12. Mateus, O. and Milàn, J., Lethaia 43, 245 (2010).Google Scholar
13. Lapparent, A. F. and Zbyszewski, G., Mémoires des Services Géologiques du Portugal, nouv. Sér. 2, 1 (1957).Google Scholar
14. Buffetaut, E., Geol. Mag. 144, 1021 (2007).Google Scholar
15. Ar, A., Paganelli, C.V., Reeves, R.B., Greene, D.G. and Rahn, H., Condor 76, 153 (1974).Google Scholar
16. Seymour, R.S., Paleobiology 5, 1 (1979).Google Scholar
17. Computed Tomography - Principles, Design, Artifacts, and Recent Advances, edited by Hsieh, J. (SPIE Wiley, Bellingham, Washington USA, 2009).Google Scholar
18. Hohenstein, P., Br. J. Radiol. 77, 420 (2004).Google Scholar
19. Dierick, M., Cnudde, V., Masschaele, B., Vlassenbroeck, J., Van Hoorebeke, L. and Jacobs, P., Nucl. Instrum. Methods Phys. Res. Sect. A 580, 641 (2007).Google Scholar
20. Vontobel, P., Lehmann, E.H., Hassanein, R. and Frei, G., Physica B 385386, 475 (2006).Google Scholar
21. Kardjilov, N., Fiori, F., Giunta, G., Hilger, A., Rustichelli, F., Strobl, M., Banhart, J. and Triolo, R., J. Neutron Res. 14, 29 (2006).Google Scholar
22. Tafforeau, P., Boistel, R., Boller, E., Bravin, A., Brunet, M., Chaimanee, Y., Cloetens, P., Feist, M., Hoszowska, J., Jaeger, J.-J., Kay, R.F., Lazzari, V., Marivaux, L., Nel, A., Nemoz, C., Thibault, X., Vignaud, P. and Zabler, S., Appl. Phys. A 83, 195 (2006).Google Scholar
23. Bernhardt, R., Scharnweber, D., Müller, B., Thurner, P., Schliephake, H., Wyss, P., Beckmann, F., Goebbels, J. and Worch, H., European Cells and Materials 7, 42 (2004).Google Scholar
24. Brunke, O., Brockdorf, K., Drews, S., Müller, Bert, Donath, T., Herzen, J. and Beckmann, F., Proc.. of SPIE 7078, 70780U (2008).Google Scholar
25. Beckmann, F., Vollbrandt, J., Donath, T., Schmitz, H.W. and Schreyer, A., Nucl. Instrum. Methods Phys. Res. Sect. A 542, 279 (2005).Google Scholar
26. Tremsin, A.S., McPhate, J.B., Lehmann, E.H., Vallerga, J.V., Siegmund, O.H.W. and Feller, W.B., JINST 6, C01041, (2011).Google Scholar
27. Beckmann, F., Lippmann, T., Metge, J., Dose, T., Donath, T., Tischer, M., Liss, K.D. and Schreyer, A., in Synchrotron Radiation Instrumentation: Eighth International Conference, edited by Warwick, T. et al. . (American Institute of Physics, 2004) p. 392395.Google Scholar
28. Beckmann, F., Dose, T., Lippmann, T., Martins, R. V. and Schreyer, A., in Synchrotron Radiation Instrumentation: Ninth International Conference (AIP Conf. Proc. 879, 2007) p. 746749.Google Scholar
29. Neutrons and Synchrotron Radiation in Engineering Materials Science: From Fundamentals to Material and Component Characterization, edited by Reimers, W., Pyzalla, A.R., Schreyer, A. and Clemens, H. (Wiley-VCH Verlag GmbH & Co. KgaA, Weinheim, 2008).Google Scholar
30. Herzen, J., PhD. Thesis, Hamburg University, 2010.Google Scholar
31. Antunes, M. T., Taquet, P. and Ribeiro, V., Mem. Acad. Ciências de Lisboa 37, 83 (1998).Google Scholar
32. Sereno, P.C., Beck, A.L., Dutheil, D.B., Gado, B., Larsson, H.C.E., Lyon, G.H., Marcot, J.D., Rauhut, O.W.M., Sadleir, R.W., Sidor, C.A., Varricchio, D.D., Wilson, G.P. and Wilson, J.A., Science 282, 1298 (1998).Google Scholar
33. Barrett, J.F. and Keat, N., RadioGraphics 24, 1679 (2004).Google Scholar
34. Eggs, nests and baby dinosaurs: A look at dinosaur reproduction, edited by Carpenter, K., (Indiana University Press, Bloomington, Indiana, 1999).Google Scholar
35. Withers, P.J., Mater. Today 10, 26 (2007).Google Scholar