Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-rn2sj Total loading time: 0.306 Render date: 2022-08-08T11:28:06.539Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Dynamics of Graphene Nanodrums

Published online by Cambridge University Press:  02 March 2011

Gustavo Brunetto*
Affiliation:
Departamento de Física Aplicada, Unicamp, 13083-859 Campinas, Sao Paulo, Brazil.
Sergio B. Legoas
Affiliation:
Departamento de Física, Universidade Federal de Roraima, 69304-000 Boa Vista, Roraima, Brazil.
Vitor R. Coluci
Affiliation:
Faculdade de Tecnologia, Unicamp, 13484-370 Limeira, Sao Paulo, Brazil.
Liacir S. Lucena
Affiliation:
Departamento de Física, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, Brazil.
Douglas S. Galvao
Affiliation:
Departamento de Física Aplicada, Unicamp, 13083-859 Campinas, Sao Paulo, Brazil.
*
*Corresponding author: gusbru@ifi.unicamp.br
Get access

Abstract

Recently, it was proposed that graphene sheets deposited on silicon oxide can act as impermeable atomic membranes to standard gases, such as helium, argon, and nitrogen. It is assumed that graphene membrane is clamped over the surface due only to van der Waals forces. The leakage mechanism can be experimentally addressed only indirectly. In this work we have carried out molecular dynamics simulations to study this problem. We have considered nano-containers composed of a chamber of silicon oxide filled with gas and sealed by single and multi-layer graphene membranes. The obtained results are in good qualitative agreement with the experimental data. We observed that the graphene membranes remain attached to the substrate for pressure values up to two times the largest value experimentally investigated. We did not observe any gas leakage through the membrane/substrate interface until the critical limit is reached and then a sudden membrane detachment occurs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A., Science 306, 666 (2004).CrossRefGoogle Scholar
2. Frank, I. W., Tanenbaum, D. M., van der Zande, A. M., and McEuen, P. L., J. Vac. Sci. Technol. B 25, 2558 (2007).CrossRefGoogle Scholar
3. Faccio, R., Denis, P.A., Pardo, H., Goyenola, C., and Mombrú, A. W., J. Phys.: Condens. Matt. 21, 285304 (2009).Google Scholar
4. Geim, A. K. and Novoselov, K. S., Nature Materials 6, 183 (2007).CrossRefGoogle Scholar
5. Cadelano, E., Palla, P. L., Giordano, S., and Colombo, L., Phys. Rev. Lett. 102, 235502 (2009).CrossRefGoogle Scholar
6. Lee, C., Wei, X., Kysar, J. W., and Hone, J., Science 321, 385 (2008).CrossRefGoogle Scholar
7. Bunch, J. S., Verbridge, S. S., Alden, J. S., van der Zande, A. M., Parpia, J. M., Craighead, H. G., and McEuen, P. L., Nano Lett. 8, 2458–62 (2008).10.1021/nl801457bCrossRefGoogle Scholar
8. MacKerell, A. D., Bashford, D., Bellot, M., Dunbrack, R. L., Evanseck, J., Field, M. J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph, D., Kuchnir, L., Kuczera, K., Lau, F. T. K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D. T., Prodhom, B., Reiher, I. W. E., Roux, B., Schlenkrich, M., Smith, J., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D., and Karplus, M., J. Phys. Chem. B 102, 3586 (1998).CrossRefGoogle Scholar
9. Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kale, L., and Schulten, K., J. Comput. Chem. 26, 1781 (2005). NAMD, http://www.ks.uiuc.edu/Research/namd/.CrossRefGoogle Scholar
10. Stone, J. E., Phillips, J. C., Freddolino, P. L., Hardy, D. J., Trabuco, L. G., and Schulten, K., J. Comput. Chem. 28, 2618 (2007).10.1002/jcc.20829CrossRefGoogle Scholar
11. Brunetto, G., Legoas, S. B., Coluci, V. R., Lucena, L. S., and Galvao, D. S., to be published .Google Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Dynamics of Graphene Nanodrums
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Dynamics of Graphene Nanodrums
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Dynamics of Graphene Nanodrums
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *