Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-04-30T13:52:50.244Z Has data issue: false hasContentIssue false

The Effects of Post-Oxidation Anneal Conditions on Interface State Density Near the Conduction Band Edge and Inversion Channel Mobility for SiC MOSFETs

Published online by Cambridge University Press:  15 March 2011

G.Y. Chung
Affiliation:
Physics Department, Auburn University, AL 36849
C.C. Tin
Affiliation:
Physics Department, Auburn University, AL 36849
J. R. Williams
Affiliation:
Physics Department, Auburn University, AL 36849
K. McDonald
Affiliation:
Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235
M. Di Ventra
Affiliation:
Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235
S.T. Pantelides
Affiliation:
Also at Oak Ridge National Laboratory, Oak Ridge TN 37831
L.C. Feldman
Affiliation:
Also at Oak Ridge National Laboratory, Oak Ridge TN 37831
R.A. Weller
Affiliation:
Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235
Get access

Abstract

Results are reported for the passivation of interface states near the conduction band edge in n-4H-SiC using post-oxidation anneals in nitric oxide, ammonia and forming gas (N2/5%H2). Anneals in nitric oxide and ammonia reduce the interface state density significantly, while forming gas anneals are largely ineffective. Results suggest that interface states in SiO2/SiC and SiO2/Si have different origins, and a model is described for interface state passivation by nitrogen in the SiO2/SiC system. The inversion channel mobility of 4H-SiC MOSFETs increases with the NO annealing.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Casady, J.B. and Johnson, R.W., Solid State Electronics 30 1409 (1996).Google Scholar
[2] Cooper, J.A., Phys. Stat. Sol. (A) 162 305 (1997).Google Scholar
[3] EMIS Data Reviews Series No. 13, ed. Harris, G.L., Short Run Press, Exeter, England, 1995.Google Scholar
[4] Schorner, R., Friedrichs, P., Peters, D. and Stephani, D., IEEE Electron Device Lett. 20 241 (1999).Google Scholar
[5] Afanasev, V.V., Bassler, M., Pensl, G. and Schulz, M., Phys. Stat. Sol. (A) 162 321 (1997).Google Scholar
[6] Chung, G.Y., Tin, C.C., Won, J. H., Williams, J.R., McDonald, K., Weller, R.A., Pantelides, S.T. and Feldman, L.C., Proc. 2000 IEEE Aerospace Conf. (to be published).Google Scholar
[7] Lipkin, L.A. and Palmour, J.W., J. Electronic Materials 25(5) 909 (1996).Google Scholar
[8] Chung, G.Y., Tin, C.C., Williams, J.R., McDonald, K., Ventra, M. Di, Pantelides, S.T., Feldman, L.C. and Weller, R.A., Appl. Phys. Lett. 76(13) 1713 (2000).Google Scholar
[9] McDonald, K., Haung, M.B., Weller, R.A., Feldman, L.C., Williams, J.R., Stedile, F.C., Baumvol, I.J.R. and Radtke, C., Appl. Phys. Lett. 76(5) 568 (2000).Google Scholar
[10] Chung, G.Y., Tin, C.C., Williams, J.R., McDonald, K., Ventra, M. Di, Weller, R.A.. Pantelides, S.T. and Feldman, L.C., submitted to IEEE Elect. Dev. Lett.Google Scholar
[11] Deal, B.E., Mackenna, E.L., and Castro, P.L., J. Electochem. Soc. 116 997 (1969).Google Scholar
[12] Campi, J., Shi, Y., Luo, Y., Yan, F. and Zhao, J.H., IEEE Trans. Electron Devs. 46(3) 511 (1999).Google Scholar
[13] Suzuki, S., Fuluda, K., Okushi, H., Nagai, K., Sekigawa, T., Yoshida, S., Tanaka, T. and Arai, K., Proc.1999 Intl. Conf. on Silicon Carbide and Related Materials, (to be published)Google Scholar