Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-30T05:01:09.254Z Has data issue: false hasContentIssue false

Elastic After-Effect Due to Oxygen Relaxation in Yba2Cu3O7−δAbove Tc

Published online by Cambridge University Press:  26 February 2011

J. R. Cost
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
P. E. Armstrong
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
R. B. Poeppel
Affiliation:
Argonne National Laboratory, Argonne, IL 60439
J. T. Stanley
Affiliation:
Arizona State University, Tempe, AZ 85281
Get access

Abstract

Isothermal elastic after-effect measurements to obtain relaxation times for the stress-induced motion of oxygen in YBa2Cu3O7−δ have been made from 50°C to 110°C. These results extend our previous internal friction measurements of the same oxygen relaxation to lower temperatures. The combined results, which cover nine orders of magnitude in relaxation time, show a classical Arrhenius temperature dependence, activation energy Q−1.13±0.01 eV and attempt frequency τ0−1.6×10−13 s (log τ0−.12.79±0.13). The mechanism of the relaxation is considered to be stress-induced ordering of oxygen atoms on theCuO basal plane. Diffusivities obtained from these results are compared with those from tracer diffusion of oxygen.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Berry, B. S., Bull. Am. Phys. Soc., 33, No. 3, (1988) 512.Google Scholar
2. Tallon, J. L., Schuitema, A. H., and Tapp, N. E., Appl. Phys. Lett., 52,(1988) 507.Google Scholar
3. Tallon, J.L. and Staines, M. P., Paper K8.32 presented at Materials Research Society Spring Meeting, April 1988.Google Scholar
4. Zhang, J. X., Lin, G. M., Lin, Z. C., Liang, K. F., Fung, P. C. W., and Siu, G. G., J.Phys.: Condens. Matter, 1, (1989) 6939.Google Scholar
5. Zhang, J. X., Lin, C. M., Zeng, W. G., Liang, K. F., Lin, Z. C., Siu, G. G., Stokes, M. J., and Fung, P. C. W., Supercond. Sci. Technol., 3, (1990)163.Google Scholar
6. Xie, X. M., Chen, T. G., and Wu, Z. L., Phys. Rev. B:, 40, (1989) 4549.Google Scholar
7. Cost, J. R. and Stanley, J. T., J. of Matls. Res., to be published.Google Scholar
8. Poeppel, R. B., Dorris, S. E., Youngdahl, C.A., Singh, J. P., Lanagan, M. T..Balachandran, U., Dusek, J. T., and Goretta, K. C., J. of Met., 41, (1989) 11.Google Scholar
9. Lanagan, M. T., Poeppel, R. B., Singh, J. P., Dos Santos, D. I., Lumpp, J. K., Balachandran, U, Dusek, J.T., and Goretta, K. C., J. Less-Com.Metals, 149, (1989) 305.Google Scholar
10. Nowick, A.S. and Berry, B.S., “Anelastic Relaxations in Crystalline Solids”(Academic, New York, 1972), p.55.Google Scholar
11. Veal, B. W., You, H., Paulikas, A. P., Shi, H., Fang, Y., and Downey, J. W., Phys. Rev. B, 42, (1990) 6305.CrossRefGoogle Scholar
12. Rothman, S. R., Routbort, J. L., and Baker, J. E., Phys. Rev. B:, 40,(1989) 8852.CrossRefGoogle Scholar